
Theory of Distributed Systems

Notes

Winter 2021/22

Martin Hoefer

2

Organizational

Email: mhoefer@cs.uni-frankfurt.de
Office: 115, R.M.S. 11-15, physical office hours postponed until further notice

Lectures:
� Tue/Thu every week, mostly writing on the board, recorded as videos
� All relevant text is in this document – only figures and drawings are missing
(I make them up on the fly in the lecture)

� This document is continously updated and corrected.
Part I: Based largely on book by Peleg, copies in CS library and via Google Books
Part II: Will provide material on the website

Exercises/Exams:
� Weekly exercise sheets, published on Tuesday of week i, due Tuesday of week i+ 1,
� Turn it in via email before 08:15am, use PDF format.
� Great to discuss solutions, but write them up in your own words
� Returned and discussed Friday of week i+ 1, 10:15h in the exercise session
� Exercise sessions in Zoom, ID is on the first exercise sheet
� If you score x% of total number of exercise points, then

If 50 ≤ x < 75, one grading step bonus for exam (e.g., 2.0 to 1.7, or 3.7 to 3.3)
If 75 ≤ x, two grading steps bonus for exam (e.g., 2.0 to 1.3, or 3.3 to 2.7)

� Oral exams in February/March 2022

3

4

Contents

1 Introductory Remarks 7

1.1 Basics of Communication . 7

2 Modeling Assumptions 9

2.1 Network Model . 9

2.2 Some Graph Terminology . 9

2.3 Computational Model . 10

2.4 Complexity Measures . 11

2.5 Three Representative Models . 12

3 Broadcasting Algorithms 13

3.1 Flooding Algorithm . 13

3.2 Convergecast . 14

3.3 Bottom-Up Computation on Trees . 14

3.4 Pipelined Convergecast . 15

3.4.1 Upcast . 16

3.4.2 Applications of Upcast . 17

4 Dealing with Asynchrony 19

4.1 BFS Trees and Asynchrony . 19

4.2 Synchronization . 20

4.2.1 Synchronizer α . 22

4.2.2 Synchronizer β . 22

4.2.3 A Hybrid: Synchronizer γ . 23

5 Symmetry Breaking 25

5.1 Coloring . 25

5.1.1 Coloring Trees and Bounded-Degree Graphs 26

5.1.2 Linial’s Lower Bound . 28

5.2 Maximal Independent Set (MIS) . 30

5.2.1 Relations to Coloring . 31

5.2.2 A Fast Randomized Algorithm for MIS 32

5.2.3 Applications . 39

5

6 CONTENTS

6 Minimum Spanning Trees 41
6.1 GHS Algorithm . 42
6.2 Distributed Dual Greedy . 43
6.3 GKP Algorithm . 45
6.4 Lower Bound . 48

7 Distance and Route Approximation 51
7.1 Exact APSP in Unweighted Graphs . 52
7.2 APSP with Relabeling in Unweighted Graphs 54
7.3 Weighted Graphs . 56

8 Packet Routing 59
8.1 Deterministic Oblivious Routing . 60
8.2 Randomized Oblivious Routing . 63

8.2.1 Path Selection for the Hypercube . 64
8.2.2 Packet Scheduling for the Hypercube 66
8.2.3 Packet Routing in General Networks 69

9 Rumor Spreading 73
9.1 Stars and Cliques . 74
9.2 General Graph Topologies . 76

9.2.1 Random Geometric Graphs G(n, r) 78
9.2.2 Preferential Attachment Graphs . 79

10 Wireless Networks 81
10.1 Leaders, Initialization and the ALOHA Protocol 81

10.1.1 Initialization . 82
10.1.2 Leader Election . 84

10.2 Modeling Interference . 88
10.3 Coloring . 91

10.3.1 Acknowledgements . 95
10.4 Maximum Independent Set . 97

10.4.1 Online Learning . 97
10.4.2 Learning in Bounded-Independence Graphs 99
10.4.3 Jamming-Resistant Learning . 100

11 Random Walks 105
11.1 Basics . 105
11.2 Load Balancing with Random Walks . 106

12 Blockchain and Consenus 111
12.1 Cryptocurrencies, Trust, and Consensus . 111
12.2 Fault Tolerance and Byzantine Generals . 112
12.3 Proof-of-Work Consensus in Bitcoin . 116

Chapter 1

Introductory Remarks

Distributed system?
� Multiple processing units working together, exchanging messages etc.
� Not here: Parallel systems, Collaborative/cooperative, joint infrastructure, joint mem-
ory access

� Instead: Coordination needed, communication networks, ad-hoc networks, sensor net-
works, wireless networks

� Issues: Locality, asynchrony, communication, information flow, etc.

Focus on fundamental system protocols for basic services:
� Communication: routing, broadcast, end-to-end communication
� Maintanance of control structures: spanning trees, topology update, leader election
� Resource control: load balancing, queueing, etc.

1.1 Basics of Communication

Shared memory vs. message passing:
� Shared memory mostly used in parallel computing (PRAM etc)
� Here: Message passing models
� Explicitly model communication, allows to study locality issues

Initially: Point-to-point communication (not broadcast networks, where messages can be
delivered to many recipients).

[Pic: Graph]

Unique Issues in TDS
� Communication: Explicity modeled, incurs cost, limits to speed and capacity of infor-
mation transmission

� Coordination: Partial information of input and computational results of other proces-
sors, partial information about environment (e.g. topology, IDs)

� Failures: Transient or permanent, links/processors, loss or corruption of messages,
robustness issues, fault-tolerant algorithms

7

8 CHAPTER 1. INTRODUCTORY REMARKS

� Synchrony vs. asynchrony: We consider two model variants - both extreme, but good
for understanding

Synchronous models: Each processor has local clock with pulses, message sent at pulse
t from u to v must reach v before pulse t+1, global clock with machine cycle in three steps:

1. Perform local computation
2. Send messages to (some) neighbors
3. Receive messange from (some) neighbors

Asynchronous models: Event driven, no global clock, messages arrive in finite but un-
predictable time. On the same link: First-in-first-out, but exact time points unknown. On
different links: Arrival order is possibly different from sending order.

Gives rise to non-determinism, for same input, many different possibilities how and when
messages arrive and what happens next (different scenarios)

Distributed Algorithm Distributed algorithm Π consists of one ”protocol” Πi for each
processor i:

� Synchronous model: In round t, processor i does Yt

� Asynchronous model: On event X, processor i does YX

Chapter 2

Modeling Assumptions

2.1 Network Model

� Undirected, connected graph G = (V,E) with |V | = n nodes
� Sometimes edge weights ω(e) ≥ 0 for e ∈ E (capacity, interference, length, etc)
� Each node has and knows its unique ID.
� IDs are numbers in {1, . . . , nc} for some constant c, represented in O(log n) bits
� Vertex v has degG(v) ports, numbered 1, . . . , degG(v)
� For each edge e = {u, v}, we assume there is a port for u, a port for v and a channel
connecting them

� Each port has buffers on both sides for incoming messages
� Only one message on the channel each point in time
� No collisions, one message in each of the two directions is allowed
� Message size is O(log n) bits. For example, an ID can be sent in one message.

[Pic: Node pair and edge with ports]

2.2 Some Graph Terminology

Recall graph-theoretic distances distG(u, v) as studied in undergrad classes.

Diameter, Radius and Center
� Diameter of a graph Diam(G) = maxu,v∈V distG(u, v)
� Radius of a node v is Rad(v,G) = maxu distG(u, v)
� Radius of a graph G is Rad(G) = minv Rad(v,G)
� Center is a vertex v such that Rad(G) = Rad(v,G)

Note that Rad(G) ≤ Diam(G) ≤ 2 ·Rad(G)

[Pic: Diameter, Radius, Center]

Depth
� Depth(v, T) of node v in tree T is the distance from root.

9

10 CHAPTER 2. MODELING ASSUMPTIONS

� Depth(T) = maxv∈T{Depth(v, T)}

Neighborhoods
� Γ(v) is set of all neighbors including v itself
� ρ-neighborhood Γρ(v) given by nodes of distance ρ to v.

0 : v
1 : v and all neighbors
2 : v, all neighbors, all neighbors of neighbors
3 : etc.

[Pic: Neighborhoods]

Tree Levels
� Level 0: root
� Level 1: direct children of root
� Level 2: direct children of direct children of root
� etc
� Depth(v, T) of a node v in T is the tree level L(v)

[Pic: Example Tree Levels]

Tree Max-Levels L̂(v) = Depth(Tv), the depth of subtree Tv rooted at v,

L̂(v) =

{
0 if v is leaf, and

1 + maxu child of v L̂(u) otherwise.

Tree Min-Levels

L̄(v) =

{
0 if v is leaf, and

1 + minu child of v L̄(u) otherwise.

[Pic: Example Max- and Min-Levels]

2.3 Computational Model

� Algorithm Π composed of n protocols Π1, . . . ,Πn for processors/nodes v1, . . . , vn
� Each node i has state set Qi and is in some state qi at any point in time
� Each link ei = {u, v} has state set Q̄i and is in some state q̄i at any point in time
� Link state q̄i has a components (qu→v, qv→u) for each direction.
� Link state qu→v ∈M∪{λ}, whereM is set of possible messages, and λ means channel
is empty.

� Execution of distributed algorithm governed by three types of events:

2.4. COMPLEXITY MEASURES 11

1. Compute(i)
2. Send(i, j,MSG) for some MSG ∈M
3. Deliver(i, j,MSG) for some MSG ∈M

� Events change configuration of states of nodes and links as defined by the algorithm

� Execution of algorithm Π on input I with network G is denoted ηΠ(G, I). It is a
(possibly infinite) sequence of configurations Ci alternating with events ϕi:

ηΠ(G, I) = (C0, ϕ1, C1, ϕ2, C2, ϕ3, . . .)

� By definition, a finite execution always ends with a configuration.
� Asynchronous model: Messages get delivered in finite time (i.e. Send(i, j,MSG) event
triggers a corresponding Deliver(i, j,MSG) event after finite time)

� Synchronous model: Each round r for node i proceeds as follows:
1. Compute(i)
2. Messages of i for neighbors are sent out
3. Messages for i sent out by neighbors in round r get delivered

2.4 Complexity Measures

Time complexity Time(Π, G) of algo Π and network G:
� Worst-case number of rounds/time units from start of execution of first processor to
end of execution of last processor

� Asynchronous: assuming messages get delivered in at most one time unit, worst-case
is worst-case input and scenarios

Message complexity Message(Π, G) of algo Π and network G:
� Overcoming locality might require a lot of communication
� Algorithm that needs many messages is bad: Overhead in the network, vulnerability
to failures, etc.

� Message complexity: Worst-case number of basic messages sent by all nodes throughout
the execution

� Basic message: O(log n) bits

Example Time vs. Message Complexity:
� Complete graph, the goal is to send a single message from node 0 to node 1
� ΠA sends one message from node 0 to node 1
� ΠB sends simultaneously separate messages from node i to i+ 1, for every i
� ΠC sends sequentially a message from node i to i+ 1, for every i
� ΠD sends simultaneously separate messages from 0 to everyone else

Time: A,B,D require one step and are all fast
Message: Only A is fast. B,C,D use a lot of additional, wasteful messages.

Sometimes we incorporate a communcation cost e.g., for links with different lenghts.
Communication cost Comm(Π, G): cost of message weighted by link length w(e)

12 CHAPTER 2. MODELING ASSUMPTIONS

2.5 Three Representative Models

Extremely large variety of model variants. We make some assumptions:
1. No faults, no outage of nodes, no dynamic changes of network
2. Nodes have access to unique IDs, ID size is O(log n) bits
3. Computation is free, nodes are allowed to solve, e.g., NP-hard problems

Three traditional models to capture main limitations in distributed systems:

CONGEST LOCAL ASYNC

Main Limitation Communication Volume Locality Asynchrony

Message Size O(log n) bits unlimited limited/unlimited

Local Computation unlimited unlimited unlimited

Communication synch. or asynch. synchronous asynchronous

Wakeup simul. or asynch. simultaneous asynchronous

Message size in ASYNC often does not matter much.

Chapter 3

Broadcasting Algorithms

Broadcast: Source node r0 has message, distribute the message to all n nodes

A network is clean if the nodes know nothing about the topology.

Lemma 1. For any broadcast algorithm B and any graph G = (V,E) in both synchronous
and asynchronous models:

� Message(B,G) ≥ n− 1
� Message(B,G) ≥ |E| if the network is clean,
� Time(B,G) ≥ Rad(r0, G) = Ω(Diam(G))

Proof. Messages: Each node except r0 needs to get the message.
Messages+Clean: If you don’t try every edge, in worst-case you miss parts of the network.
Time: Message needs to reach farthest destination, which is Rad(r0, G) away. In worst-case,
each message needs 1 time step to travel.

Message complexity: Broadcast ⇔ Spanning Tree Construction (up to O(n) messages)
� Any broadcast algorithm B can be used to build spanning tree TB:
� Parent is the node you received the message from first.
� Hence, message complexity of tree construction is at most that of broadcast. Also, vice
versa (plus O(n) for actual broadcast)

3.1 Flooding Algorithm

Algorithm Flood: If node v has not seen the message and receives it in some time step from
neighbors, it forwards it over all other neighbors in the next time step. If v has seen the
message, it does nothing.

Lemma 2. Message(Flood,G) = Θ(|E|) and Time(Flood,G) = Θ(Rad(r0, G)) = Θ(Diam(G))
in both synchronous and asynchronous models

Proof. Message: Every edge delivers message at least once and at most twice.
Time: By induction, at time step t, message has reached every node with distance at most
t from r0 (i.e., all of Γt(r0)). In the asynchronous model, message might have reached nodes
beyond Γt(r0).

13

14 CHAPTER 3. BROADCASTING ALGORITHMS

Lemma 3. Let T be spanning tree constructed by Flood.
Synchronous: T is a BFS tree with root r0, so Depth(T) = Rad(r0, G).
Asynchronous: T can have Depth(T) = n− 1.

Proof. Synchronous: By induction, message reaches vertices at distance t from r0 precisely
in round t, hence depth in T is t.
Asynchronous: Message travels faster on some paths than others, so no guarantee on depth
(except trivial ones)

[Pic: Complete graph, star vs. path-tree depending on speed of messages]

3.2 Convergecast

How to realize broadcast has terminated? Reverse direction: Accumulate in r0 a message
(e.g., acknowledgement or echo) from all other nodes

Convergecast: Collect information bottom-up in a tree

Algorithm Converge(Ack): If i is leaf, sends directly acknowledgement (ack) to its parent.
In i is non-leaf, after all children sent ack to i, then i sends ack to its parent.

Ack inductively certifies: All of subtree Ti received the message.

[Pic: Schema Acks]

Lemma 4. On a tree T we have that Time(Converge(Ack), T) = Depth(T) and
Message(Converge(Ack), T) = n− 1.

We augment the Flood algorithm with Converge(Ack) (termed Flood&Echo)

Flood builds tree that is used for convergecast. Synchronous: Time complexity at most
doubles, acks not much more demanding. Asynchronous: Can be Θ(n), even though broad-
cast finishes very quickly, when broadcast builds a very skewed tree.

Lemma 5.
1. Message(Flood&Echo,G) = O(|E|)

2. Time(Flood&Echo,G) =

{
O(Diam(G)) in the synchronous model

O(n) in the asynchronous model

3. In both models, broadcast ensures message MSG reaches all vertices by time Diam(G).

3.3 Bottom-Up Computation on Trees

Each vertex v has a value xv, compute a global function f(x1, . . . , xn).

Definition 1. f is a semigroup function if it has three properties
1. f well-defined for any subset of inputs, i.e., f(Y) defined for any Y ⊆ X = {x1, . . . , xn}
2. f associative and commutative
3. representation of f(X) “relatively short” compared to that of the inputs x1, . . . , xn.

3.4. PIPELINED CONVERGECAST 15

Convergecast can be used to compute f(X).
Procedure Converge(f,X):

� Node v waits to receive f(Tvi) from children vi.
� If v leaf or all children v1, . . . , vk of v delivered, v computes f(xv, f(Tv1), . . . , f(Tvk))
� Then v sends result to parent.
Result is correct due to associativity and commutativity.

f(X) can be much larger than n. For every Y ⊆ X we assume f(Y) needs O(p) bits for
representation. Then we need O(p/ log n) messages to send the result to the parent.

Lemma 6. If representing f(Y) needs at most O(p) bits for any Y ⊆ X , then
� Message(Converge(f,X), T) = O(np/ log n)
� Time(Converge(f,X), T) = O(Depth(T) · p/ log n)

Globally-sensetive f : Result relies on every input value.

Lemma 7. For every tree T , computing any globally-sensitive f on T has message complexity
Ω(n) and time complexity Ω(Depth(T)).

Examples [add Pics]:

� Addition of m-bit integers
Any sum has at most O(m+ log n) bits.
Message: O(nm), Time: O(Depth(T) ·m).

� Maximum of m-bit integers:
Any maximum has at most m bits.
Message: O(nm/ log n), Time: O(Depth(T) ·m/ log n)

� Logical conditions
Each node v has a predicate Pred(v) that is either true or false
Logical combinations with either ∧ or ∨ are associative and commutative.
In this way, the source can be informed if

∨
i Pred(vi) (at least one) or

∧
i Pred(vi) (all)

of the predicates Pred(vi) in the network hold true. Converge(Ack) above is equivalent
to checking if ∧

i

Pred(vi)

is true, where Pred(vi) = “vi received the original message”.

3.4 Pipelined Convergecast

Suppose each node v of tree T has a k-dimensional vector (x1,v, . . . , xk,v), where every xi,v

is a log(n)-bit value. The goal is to compute k semigroup functions for each position,
e.g., compute the vector (maxu x1,u,maxu x2,u, . . . ,maxu xk,u). Trivial solution: Perform k
convergecast operations. Needs time O(k ·Depth(T))

16 CHAPTER 3. BROADCASTING ALGORITHMS

Better solution in synchronous model: Each leaf starts convergecast for first position in
round 1, second convergecast for position 2 in round 2, third one in round 3, etc.

Information rises up in the tree like a pipeline. Interior nodes v receive partial results for
subtrees for the second, third, etc. position over time. Inductively, all maxima of subtrees
will first be collected for position 1 in round L̂v, and then for position 2 in round L̂v + 1,
etc. The maximum in subtree Tv for position i will correctly be reported to the parent of v
in round L̂v + i.

Lemma 8. Synchronous: Computing k global semigroup functions on a tree T can be done
in time O(Depth(T) + k).

Asynchronous: Use the fact that messages over the same link are processed in FIFO
order.

Lemma 9. Asynchronous: Computing k global semigroup functions on a tree T can also be
done in time O(Depth(T) + k).

3.4.1 Upcast

We concentrate on message complexity in the synchronous CONGEST model.
Upcast: Vertices have a total of m messages A = {µ1, . . . , µm}, a message may be present
at mulitple vertices. Collect one copy of every message at the root.

[Pic: Example Upcast]

Obvious lower bounds for time complexity of Ω(Depth(T)) on a given tree T , and Ω(m) on
any tree.

Algorithm Upcast: In each round, forward to parent an arbitrary message that has not
been upcast so far.

Lemma 10. Consider vertex v and integer t. Suppose that for every 1 ≤ i ≤ k, at the end
of round t + i, v stored at least i messages. Then at the end of round t + k + 1, v’s parent
w has received from v at least k messages.

Proof. By induction on t.
Init: End of round t+1, v has at least one message. Either transmitted to parent earlier,

or v will transmit in round t+ 2. By end of round t+ 2 at the latest, parent has received at
least one message.

Step: Suppose lemma is true until round t+ i. By inductive hypothesis, parent received
at least i− 1 messages by the end of round t+ i. If it received more than i messages, done.
Otherwise, parent received exactly i−1 messages. v has at least i messages in round t+ i, so
one is transmitted in round t+ i+1, reaches parent by the end of round t+ i+1, done.

Mv – set of messages initially stored anywhere in the subtree Tv.

Lemma 11. For every 1 ≤ i ≤ |Mv|, at the end of round L̂(v) + i − 1, at least i messages
are stored at v.

3.4. PIPELINED CONVERGECAST 17

Proof. We fix i and prove it by induction on L̂(v).
Init: For leaf with L̂(v) = 0 the lemma is true – all of Mv stored at v from the start.
Step: Suppose claim holds for all nodes w with L̂(w) = ℓ− 1. Consider v with L̂(v) = ℓ.

� Consider child wj of v, let ℓj = L̂(wj), mj = |Mwj
| and γj = min(i,mj)

� Note ℓj ≤ ℓ − 1. Inductive hypothesis: For all 1 ≤ i′ ≤ mj, at the end of round
ℓj+ i′−1, wj has at least i

′ messages. Apply previous lemma (t = (ℓj−1) and k = γj):
At the end of round (ℓj − 1) + γj + 1, v already received from wj at least γj messages.

� Hence, if v has child with mj ≥ i, then v received γj = i messages. Lemma is shown.
� Otherwise, mj < i (so γj = mj) for all children. Then, by above arguments, at the end
of round (ℓj − 1) + i + 1 = ℓ + i − 1, v received all mj messages from every child wj.
Thus, v stores all of the |Mv| ≥ i items.

Previous lemma: Root has m messages at the end of round Depth(T) +m− 1.

Corollary 1. Upcast of m messages on a tree T can be done in time at most m+Depth(T).

3.4.2 Applications of Upcast

Information gathering and dissemination Collect all messages and broadcast them to
all nodes in the network

� Upcast of items to the root takes time Depth(T) +m
� Downcast all messages from the root in pipelined fashion
� Takes time Depth(T) +m.

Route-Disjoint Matching Given rooted tree T and a set W of 2k marked vertices in T
(k ≤ ⌊n/2⌋). Wanted: Perfect matching for W such that all matched pairs have pairwise
edge-disjoint routes connecting them in T . Each node w ∈ W should know the ID of its
matched partner. Can be found by suitable algorithm (Exercise).

[Pic: Example Route-Disjoint]

Lemma 12. For every tree T and every set W , there exists a route-disjoint matching. The
matching can be found by a distributed algorithm on T in time O(Depth(T)).

Token Distribution n tokens distributed on the nodes (O(log n) bits each). Each node
at most K tokens. Redistribute tokens such that every node has exactly one token.

[Pic: Example Tokens]

� Each token can be sent in 1 message
� Total cost of redistribution = Sum of distances traversed by tokens
� Use convergecast to determine:

1. su: number of tokens in subtree Tu.
2. nu: number of vertices in Tu

18 CHAPTER 3. BROADCASTING ALGORITHMS

3. pu = su − nu: number of tokens that must leave Tu.
� Total number of messages necessary is P =

∑
u̸=r0
|pu|.

� Can be achieved by suitable distributed algorithm. (Exercise)

Lemma 13. There is a distributed algorithm for token distribution using an optimal num-
ber of P messages and O(n) time, after preprocessing with O(Depth(T)) time and O(n)
messages.

Chapter 4

Dealing with Asynchrony

4.1 BFS Trees and Asynchrony

Synchronous model: Flood builds a BFS tree. Here: BFS trees in asynchronous CONGEST
model using repeated acks with Dijkstra’s algorithm.

Algorithm 1: D-BFS

1 Start phase p = 0 with T composed of root r0
2 repeat
3 r0 broadcasts ”start p” in T
4 if leaf of T gets ”start p” then sends ”join p+ 1” to all quiet neighbors (that u

has received no msg from before)
5 if v ̸∈ T gets ”join p+ 1” then
6 Picks one parent w from the senders, replies ”ACK parent” to w
7 Replies ”ACK no parent” to all other senders, becomes leaf of T at level p+1

8 if v ∈ T gets ”join p+ 1” then replies ”NACK” to all such messages.
9 Leaves of T at level p collect answers from neighbors

10 Then every leaf v starts convergecast, indicating if new child of v was found.
11 When convergecast ends at r0, r0 increments phase.

12 until no new node discovered

[Pic: Schema]

Correctness: Simple induction.

Theorem 1. For D-BFS in the asynchronous CONGEST model
� Time(D-BFS, G) = O(Diam(G)2)
� Message(D-BFS, G) = O(|E|+ n ·Diam(G))

Proof. In phase p:
� Broadcast and convergecast in T : Total time at most 2p
� Exploration of new neighbors: Time at most 2
� Broadcast and convergecast need O(n) messages

19

20 CHAPTER 4. DEALING WITH ASYNCHRONY

Every edge: Exactly one ”join x” message (for some number x), and exactly one ACK/NACK
message in the whole algorithm. This gives

� Time(D-BFS, G) =
∑

p 2p+ 2 = O(Diam(G)2)
� Message(D-BFS, G) = 2|E|+

∑
p O(n) = O(|E|+ n ·Diam(G))

Better idea: Bellman-Ford, very important in the Internet, basic version of border gateway
protocol (BGP)

Algorithm 2: BF-BFS

1 Root sets L(r0)← 0, all other nodes L(v)←∞
2 r0 sends ”1” message to all neighbors
3 on node v gets message ”d” with d < L(v) from neighbor w do
4 parent(v)← w, L(v)← d
5 Send ”d+ 1” to all neighbors except w

Theorem 2. For BF-BFS in the asynchronous CONGEST model
� Time(BF-BFS, G) = O(Diam(G))
� Message(BF-BFS, G) = O(n · |E|)

Proof. Time complexity by induction: Node at distance d received message ”d” by time d.
Init: Γ1(r0) receives ”1” by time 1.
Step: v at distance d has neighbor w at distance d − 1. Induction hypothesis: w gets

”d− 1” by time d− 1. Then v gets ”d” by time d.
Message complexity: Node can reduce distance at most n− 1 times, every time sends a

message to all neighbors.

There is an algorithm B that yields an optimal trade-off:
� Time(B,G) = O(Diam(G) · log3 n)
� Message(B,G) = O(|E|+ n log3 n)

4.2 Synchronization

Given: Algorithm ΠS for some synchronous model
Goal: General ”synchronizer” ν, such that ΠA = ν(ΠS) is algorithm for corresponding
asynchronous model

Both components ΠS and ν have their own local variables, environment, etc.

Approach: Pulse Generator
� Pulse - essentially a coordinating tick of a clock
� Each processor maintains internal variable of current pulse
� In pulse p, processor performs exactly the actions in round p specified in the syn-
chronous algorithm ΠS (i.e., (i) compute, (ii) send messages of round p, (iii) receive
messages of round p).

4.2. SYNCHRONIZATION 21

� Maintain coordination of neighboring nodes. Globally, nodes might be in very dif-
ferent pulses at the same time

Definitions:
� Original message: Message sent due to ΠS.
� v at pulse p: Internal pulse variable of v is set to p
� Pulse compatibility: v at pulse p sends original MSG to neighbor w. Then MSG
must be received by w at pulse p.

� Similar execution: ΠS and ΠA = ν(ΠS) have similar executions if
1. start of pulse p in ΠA same values are stored at every processor as in the start of

round p in ΠS,
2. original messages sent/received during pulse p are exactly the ones sent/received

in round p
3. at the end of execution same final output at every processor

� Correct Simulation: ΠA simulates ΠS if for every input, executions are similar. ν is
correct if for all synchronous protocols ΠS the algorithm ν(ΠS) simulates ΠS.

Lemma 14. ν satisfies pulse compatibility ⇒ ν is correct.

v must wait for all original messages sent by neighbors during pulse p− 1 before generating
pulse p. Messages sent from neighbors in later pulses p′ > p must be used by v only by the
time v itself advances to pulse p′ + 1.

� Readiness Rule: v is ready for pulse p if it received all messages sent by neighbors
during pulse p−1. v is allowed to generate pulse p once finished with required original
computation for pulse p− 1 and ready for pulse p.

� Delay Rule: v receives in pulse p a message MSG from a neighbor in a later pulse
p′ > p ⇒ v stores MSG in a buffer, consumes it only when it advances to pulse p′ + 1.

To satisfy delay rule, attach local pulse number to original message.

Lemma 15. ν satisfies readiness and delay rules ⇒ ν satisfies pulse compatibility and is
correct.

Readiness easy if ν makes every processor send a message to every neighbor at every pulse.
What if this is not the case? We might wait forever for a message that was never sent. Also,
do we really need the buffer for ”future” messages?
Problem 1: Wait forever for a message that might never been sent.
Problem 2: Limited buffer to store messages for future pulses?

Two or Three Phase Implementation:
� Phase A: Send original messages. Every receiving neighbor is required to return ack.
� v is safe w.r.t. pulse p if all messages sent during pulse p arrived.
� Obviously, if all neighbors w of v are safe, then v is ready for pulse p+ 1.
� Phase B: Apply procedure to let each processor know that all neighbors are safe w.r.t.
pulse p.

22 CHAPTER 4. DEALING WITH ASYNCHRONY

Phases A+B take care of Problem 1. For Problem 2:
� v is enabled for pulse p once all neighbors w are ready for pulse p.
� Enabling Rule: v starts Phase A of pulse p only when it is enabled for pulse p.
� Phase C: Apply procedure to let each processor know that all neighbors are ready for
pulse p.

Lemma 16. ν satisfies readiness and enabling rules ⇒ ν satisfies pulse compatibility and is
correct.

Notation and Complexity Measures
� Initialization: Timeinit(ν), Messageinit(ν)
� v generates pulse p at some global time t(v, p), tmax(p) = maxv t(v, p)
� Timepulse(ν) = maxp≥0 tmax(p+ 1)− tmax(p)
� Messagepulse(ν): Number of messages for coordination during a single pulse

Lemma 17.
1. Message(ΠA) ≤ Messageinit(ν) +Message(ΠS) + Time(ΠS) ·Messagepulse(ν)
2. Time(ΠA) ≤ Timeinit(ν) + Time(ΠS) · Timepulse(ν)

Phase A does not contribute to the overhead.
Remains to show: Efficiently implement Phases B and C, nodes must be informed when all
neighbors satisfy a binary property (safe, ready).

4.2.1 Synchronizer α

When node v is safe (or ready), it sends this fact to every neighbor.
Straightforward implementation of readiness and enabling rules.

Initialization:
� Broadcast init message from source r0 using Flood (no echo).
� Messageinit(α) = O(|E|)
� Timeinit(α) = O(Diam(G))

Each pulse:
� Messagepulse(α) = O(|E|)
� Timepulse(α) = O(1)
� The node that is latest to complete the pulse just suffers a constant-factor overhead in
time due to the sending of coordination messages in Phases B and C.

Easy, very good time complexity, rather large message complexity.

4.2.2 Synchronizer β

Assume nodes know spanning tree T rooted in r0. We collect all safety information in Phase
B using a convergecast in T :

� If v learns that itself and all descendants are safe, it sends this info to parent(v).
� Once root learns all nodes are safe, it broadcasts this info in the tree. Then all nodes
start a new pulse (or proceed to Phase C).

4.2. SYNCHRONIZATION 23

Another straightforward implementation of readiness and enabling rules.

Initialization:
� Build BFS tree from source r0, using, e.g., Bellman-Ford.
� Messageinit(β) = O(n|E|)
� Timeinit(β) = O(Diam(G))

Each pulse:
� Messagepulse(β) = O(n)
� Timepulse(β) = O(Diam(G))
� The node that is latest to complete the pulse just suffers a constant-factor overhead in
time due to the sending of coordination messages in Phases B and C.

Very good message complexity, rather bad time complexity. Good for low-diameter networks.

4.2.3 A Hybrid: Synchronizer γ

In the initialization, we assume some more structure is established
� Node set is partitioned into clusters.
� Each cluster C is connected and organized into a rooted BFS tree.
� Root node is called the leader of the cluster.
� Clusters C1, C2 are neighboring if there is an edge between them.
� For every pair of neighboring clusters, we pick a single one of the edges connecting
them as their intercluster edge.

[Pic: Example]

Phase B works as follows:
� Safety for nodes within each cluster is communicated to the leader via convergecast.
� When all nodes are safe, this info is broadcast from the leader to all nodes in the cluster
and via intercluster edges to all neighboring clusters.

� Safety information from neighboring clusters is communicated to the cluster leader via
convergecast.

� Then the leader sends a broadcast to start the next pulse (or start the same procedure
for Phase C and readiness).

Synchronizer γ applies synchronizer β inside each cluster, and synchronizer α between clus-
ters. Optimal trade-off between time and message complexities of α and β.

Notation:
� EC is the set of all intercluster edges
� TC is the tree used in cluster C
� k = maxC Depth(TC)

Inititalization is more complicated. Here only complexity for each pulse:
� Messagepulse(γ) = O(|EC |+ n)
� Timepulse(γ) = O(k)

24 CHAPTER 4. DEALING WITH ASYNCHRONY

It is possible to achieve |EC | ∈ O(n1+1/k), which is an optimal trade-off between cluster
radius and number of intercluster edges. For k = ⌈log n⌉ message complexity becomes O(n)
(same as synchronizer β) but time complexity O(log n) (instead of O(Diam(G)) for β).

Chapter 5

Symmetry Breaking

Fundamental problem: Leader election. Initially, all nodes might be symmetric and in the
same state, every node thinks it is the leader (or not the leader). This and similar problems
in distributed environments require techniques for symmetry breaking.

Leader election is a global problem. We consider local analogs:

Vertex Coloring Assign a rank (or color) to each node s.t. in each neighborhood every
rank appears at most once

Maximal Independent Set (MIS) Find a set of leaders s.t. in the neighborhood of each
node there is exactly one leader

5.1 Coloring

Distributed vertex coloring
� Palette of m possible colors (priorities, channels, access rights, resources, etc)
� Assign each vertex a single color s.t. neighboring vertices have different colors
� How many colors do we need? Nodes have unique IDs, with n colors it’s possible
� Use as few colors as possible

Minimum number of colors needed for graph G is chromatic number χ(G). Chromatic
number can be NP-hard to compute, even hard to approximate within non-trivial factors

We consider simultaneous wakeup, synchronous LOCAL model. An obvious approach to sym-
metry breaking is to use the unique IDs. Towards this end, consider the Reduce algorithm.

Lemma 18. Let ∆ = maxv∈V degG(v) be the maximum degree. Reduce terminates in at
most n rounds and uses at most ∆+ 1 colors.

Proof. The proof is simple:
� No two neighbors choose simultaneously. Hence, coloring is feasible.

25

26 CHAPTER 5. SYMMETRY BREAKING

Algorithm 3: Greedy procedure Reduce for each node v

1 send ID to all neighbors
2 while exists uncolored neighbor with higher ID do
3 send ”undecided” to all neighbors

4 choose smallest admissible free color
5 send color choice to all neighbors

� Each round (at least) the uncolored node with highest ID gets colored. We need at
most n rounds.

� Neighbors of v can only block degG(v) many colors, so v always finds a permissible
color within the first degG(v) + 1 colors.

� Algorithm uses at most ∆ + 1 colors, where ∆ = maxv∈V degG(v).

5.1.1 Coloring Trees and Bounded-Degree Graphs

Each tree T is a bipartite graph, so χ(T) ≤ 2.
Obvious algo A: Broadcast with alternating 0/1 messages. Root colors itself cr0 ← 0, sends
”1” to all children. Each v ∈ V upon receiving x ∈ {0, 1} colors itself cv ← x, sends 1 − x
to all children. Time(A, T) = Depth(T), too slow if tree is deep.

Algorithm 4: Amazingly fast 6-Color algorithm

1 cv ← ID(v) for all v
2 Send own color cv to all children
3 repeat
4 Receive color cp from parent
5 Interpret cp and cv as bit strings, let ℓ be number of bits of cv
6 Let i be index of smallest bit, where cv and cp differ (if v = r0 set i to 0)
7 New label: i (as bitstring) followed by ith bit of cv
8 Send cv to all children

9 until cv still has ℓ bits

Example: (last bit has index 0, second-to-last index 1, etc.)

Grand-Parent: 0010110000 → 10010 → ...

Parent: 1010010000 → 01010 → 111

Child: 0110010000 → 10001 → 001

i-times application of the logarithm: log2(log2(. . . (log2(log2(n))) . . .)) = log
(i)
2 (n).

log∗ n is the smallest integer i such that log
(i)
2 (n) ≤ 2.

Theorem 3. 6-Color legally colors the tree with at most 6 colors in Time(6-Color, T) =
O(log∗ n).

5.1. COLORING 27

Proof. Legal coloring: Consider neighboring v, w, let w = parent(v).
� They pick different indices in step 6: Color labels differ afterwards.
� They pick same index: Rule in step 7 ensures the color number differs in last bit.

Running time: Let ni be the maximum number of bits needed to represent a color after i-th
iteration.

� Initially, colors are IDs, so n0 = O(log n).
� Then ni+1 = ⌈log2(ni)⌉+ 1, due to assignment in step 7.
� Some numeric facts of the series (ni)i=0,1,2,...:

– ni+1 < ni as long as ni ≥ 4.

– ni ≤ ⌈log(i)2 n0⌉+ 2 for every i with log(i) n0 ≥ 2.
� Number of bits for colors shrinks logarithmically to 3 in at most O(log∗ n) rounds.
� Then: 3 choices for a bit index in step 6 and 2 choices for the appended bit in step 7.
� Hence, in the end at most 3 · 2 = 6 colors

Algorithm 5: Subsequent Refinement: Six2Three

1 for x ∈ {3, 4, 5} do
2 Every node v ̸= r0 simulatenously adopts color of its parent
3 Root uses new color in {0, 1, 2}, different from current one
4 Every node v with cv = x picks a legal color in {0, 1, 2}

[Pic: Example]

Theorem 4. Algorithms 6-Color and Six2Three legally color any tree with at most 3 colors
in time O(log∗ n).

Proof. Six2Three needs only O(1) rounds. The Shift-Down in step 2 keeps the coloring legal,
since each parent and child had different colors before. After Step 2 all siblings use same
color. Then for each node v one color for all children, another one for parent, so v has a free
legal color in {0, 1, 2}. Thus, colors {3, 4, 5} can be removed.

What about 2 colors? Intuition: Correct coloring of a path from the root yields information
about distance being even or odd. In the worst case, this information needs time Ω(n) to
propagate!

Beyond trees: Colorings with ∆ + 1 colors in graphs G with constant max-degree ∆.

Theorem 5. There exists a deterministic distributed algorithm for coloring arbitrary bounded-
degree graphs with ∆+ 1 colors in time O(log∗ n).

Proof. For each w ∈ Γ(v), execute Steps 6 and 7 in 6-Color separately using color cw (instead
of cp). Concatenate all the resulting bitstrings into a new label.1

1The algorithm for trees works also in the CONGEST model, since the initial IDs in the first round
constitute the largest messages we send. Here, in the first round, the new label might be longer than a single
ID and a single message size in the CONGEST model. For bounded-degree graphs, every node only has a
constant number of neighbors, so the time required to send these larger messages in the CONGEST model
only suffers from an increase by a constant factor ∆. Alternatively, in the LOCAL model, we do not suffer a
factor ∆ increase due to unlimited message size.

28 CHAPTER 5. SYMMETRY BREAKING

For the formal proof we need to show the following steps:
1. Coloring is legal in every round
2. Set up recursion for ni (bit-length of color number)
3. ni stops shrinking when color number is a O(∆ log∆)-bit label
4. Constant ∆: ni stops shrinking after time O(log∗ n)

In the end, O(∆ log∆)-bit labels imply 2O(∆ log∆) colors. Interpret color number as fake-ID
and run Reduce to (re-)color every node with at most ∆ + 1 colors. Reduce produces a
legal coloring – since fake-IDs in each neighborhood are unique, no two neighboring nodes are
(re-)colored simultaneously. In each step, at least the nodes with highest remaining fake-ID
get (re-)colored. Thus, Reduce needs time 2O(∆ log∆) = O(1) (since ∆ = O(1)).

Steps 1.-3. are left as an exercise, step 4. follows from numeric facts, similar to the ones
above.

For general (unbounded-degree) graphs, one can beat the running time of Reduce. We
mention the result without proof.

Theorem 6. There exists a deterministic distributed algorithm for coloring arbitrary graphs
with ∆+ 1 colors in time O(∆ log n).

5.1.2 Linial’s Lower Bound

Goal: Lower bound for 3-coloring rooted trees in the LOCAL model
Consider a rooted tree as a path rooted at one of the endpoints. We assume that root has
smallest ID, and the IDs are strictly increasing along the path. We call this instance a
monotone path.

Algorithms in the LOCAL model:
� Unlimited computation, unlimited communication
� Consider any algorithm in the LOCAL model that terminates in t+ 1 rounds.
� Nodes do not need to send more than the unknown information about their input, edge
structure, and IDs.

� All results of local computations in earlier rounds that are able to reach v by round t
can only depend on information that v also receives by round t.

� Hence, all computation can be done by v itself.
� Wlog every algorithm in the LOCAL model that terminates in t+ 1 rounds:

1. Learn about edges, IDs and inputs in t-neighborhood Γt(v) in the first t rounds.
2. In round t+ 1 compute some function f(Γt(v)).

LOCALmodel captures locality restriction for computation in a mathematically rigorous way.

Every deterministic 3-coloring algorithm that terminates in t rounds on the directed path:
� In rounds 1, . . . , t− 1: Learn (1) IDs of all 2t− 2 neighbors of distance at most t− 1,
and (2) their order along the path

� In round t: Compute cv ∈ {0, 1, 2} based on the ordered vector of 2t− 1 IDs in Γt(v).

B is a k-ary q-coloring function if for all 1 ≤ a1 < a2 < . . . < ak < ak+1 ≤ n we have

5.1. COLORING 29

P1: B(a1, . . . , ak) ∈ {0, 1, 2, . . . , q − 1}
P2: B(a1, . . . , ak) ̸= B(a2, . . . , ak+1)

Lemma 19. A deterministic distributed 3-coloring algorithm for an n-node monotone path
in t < log∗ n

2
− 1 rounds computes a k-ary 3-coloring function with k = 2t− 1 < log∗ n− 3.

Proof. Given 1 ≤ a1 < . . . < ak+1 ≤ n, construct imaginary monotone path with IDs ai
along the path. Run coloring algorithm on nodes at and at+1.

[Pic: Example]

� In the first t− 1 rounds, algorithm collects vector of 2t− 1 IDs in each neighborhood.
� Round t: Algorithm computes color fA(a1, . . . , ak) at node at and color fA(a2, . . . , ak+1)
at node at+1

� Algorithm correct, so each one a feasible color in {0, 1, 2} ⇒ P1 holds for fA
� Algorithm correct, so legal coloring ⇒ P2 holds for fA

Hence, fA is a k-ary 3-coloring function.

These functions allow for an interesting tradeoff between size of input and number of colors:

Lemma 20. If there is a k-ary q-coloring function B, then there is a (k−1)-ary 2q-coloring
function B′.

Proof. Given an input 1 ≤ a1 < . . . < ak−1 ≤ n for B′, we define B′ based on k-ary q-coloring
function B:

� First, let B′(a1, . . . , ak−1) be the subset of colors that would be used by B when
adding to the input a new largest number. More formally,

B′(a1, . . . , ak−1) = {i ∈ {0, 1, . . . , q−1} | ∃ak with n ≥ ak > ak−1 and B(a1, . . . , ak) = i}.

To show the two properties we observe:
� B′(a1, . . . , ak−1) is a subset of {0, 1, . . . , q − 1}. We can turn the subset into a bit-
string, where bit bi is 1 iff i is in the subset and 0 otherwise, for every i = 0, 1, . . . , q−1

� Then, B′(a1, . . . , ak−1) ∈ {0, 1, . . . , 2q − 1}, so P1 holds for B′.
� Assume for contradiction that P2 is violated:
There are 1 ≤ a1 < . . . < ak−1 < ak ≤ n with B′(a1, . . . , ak−1) = B′(a2, . . . , ak).

� Let q∗ = B(a1, . . . , ak). By definition q∗ ∈ B′(a1, . . . , ak−1).
� By assumption that P2 is violated: q∗ ∈ B′(a2, . . . , ak)
� Hence, there must be n ≥ ak+1 > ak with B(a2, . . . , ak, ak+1) = q∗.
� Then B(a1, . . . , ak) = q∗ = B(a2, . . . , ak+1), so B would violate P2.
� Contradiction, so P2 holds for B′.

Hence, if there is a k-ary 3-coloring function, then there are also
� (k − 1)-ary 23-coloring function
� (k − 2)-ary 22

3
-coloring function

� (k − 3)-ary 22
23

-coloring function
� . . .

� 1-ary q1-coloring function, where q1 = 22
. .

.
23

30 CHAPTER 5. SYMMETRY BREAKING

q1 results from applying 2x to 3 at most k < log∗ n − 3 times. Suppose q1 = n, reverse the
process: Apply log2 x at most k < log∗ n− 3 times to n. By assumption log∗ n is a number
> 3. Thus, it must be q1 < n.

Hence:
A deterministic distributed algorithm for 3-coloring an n-node monotone path in less than
log∗ n

2
− 1 rounds

⇒ k-ary 3-coloring function with k < log∗ n− 3
⇒ 1-ary q1-coloring function with q1 < n.
But:

Lemma 21. There is no 1-ary q1-coloring function with q1 < n.

Proof. Needs that B(a1) ̸= B(a2) for all 1 ≤ a1 < a2 ≤ n, i.e., B must assign each of the n
possible numbers ai ∈ {1, 2, . . . , n} a value from {0, 1, . . . , q1 − 1} such that all are pairwise
distinct. Pigeonhole principle implies q1 ≥ n.

This implies:

Theorem 7. Any deterministic distributed algorithm for 3-coloring an n-node monotone
path needs at least Ω(log∗ n) rounds.

5.2 Maximal Independent Set (MIS)

Consider synchronous LOCAL model with simultaneous wakeup.

Centralized MIS is trivial. Greedy algo:
Pick arbitrary node v, include in MIS, remove all nodes in Γ1(v), repeat.
Distributed implementation MIS-Rank picks node with largest ID.

Algorithm 6: MIS-Rank

1 Every node tells her ID to all neighbors, all nodes set bv ←⊥
2 repeat
3 if all neighbors w with larger ID decided bw = 0 then
4 Set bv ← 1, send ”Decide-1” to all neighbors

5 on getting ”Decide-1” from neighbor w do
6 Set bv ← 0, send ”Decide-0” to all neighbors

7 until bv ∈ {0, 1}

Time(MIS-Rank, G) = O(n) and Message(MIS-Rank, G) = O(|E|).

IDs are essential for deterministic algorithms. Network is anonymous if every node sees
exactly the same input and the same ID.

Lemma 22. There is no deterministic algorithm for computing an MIS on an anonymous
ring network with simultaneous wakeup.

Proof. Exercise.

5.2. MAXIMAL INDEPENDENT SET (MIS) 31

5.2.1 Relations to Coloring

Using a m-coloring we can also solve MIS.

Algorithm 7: Color2MIS

1 Run coloring algorithm for G, let 0, . . . ,m− 1 be used colors
2 for round i = 1, . . . ,m do
3 if original color of v is (i− 1) then
4 if no node in Γ1(v) is in MIS then
5 Set bv ← 1, send ”Decide-1” to all neighbors

6 else set bv ← 0

Lemma 23. Given a coloring algorithm that colors a graph with f(G) colors in time T (G),
Color2MIS constructs a feasible MIS in time T (G) + f(G).

Proof. IS: Each color class is an independent set. Thus, in each round, set of nodes joining
IS is independent. Nodes joining have no edges to previously added nodes.

Maximal: Suppose there is neighborhood Γ1(v) with no node from the final IS. v has
some color iv, at round iv − 1 node v would have entered IS → contradiction.

Corollary 2. There exists a deterministic distributed MIS algorithm for trees and bounded-
degree graphs with time complexity O(log∗ n).

This bound is best-possible for algorithms that compute a coloring first, but also for any
deterministic MIS algorithm (based on coloring or not).

Theorem 8. Any deterministic distributed MIS algorithm for the n-vertex path or the n-
vertex ring requires Ω(log∗ n) rounds.

Proof. Turn MIS into a 3-coloring in 3 rounds. Then result follows with Theorem 7.

Simplifying assumptions:
Tree: Root is leftmost node, parent is left neighbor, child is right neighbor.
Ring: Edges oriented consistently, every node v knows who is the ”left” and ”right” neighbor,

every node v is the right neighbor of its’ left neighbor.

Algorithm 8: MIS2ThreeColor

1 Let I be the nodes in the MIS
2 Every v ∈ I colors itself 0 and sends ”1” to left neighbor in round 1
3 if w ̸∈ I gets message ”1” in round 2 then w colors itself 1 else w colors itself 2

Correctness:
� Walk along the ring in the, say, ”right” direction
� Consider node vi in the MIS
� At most the next 2 nodes to the right (vi+1 and vi+2) are outside the MIS

32 CHAPTER 5. SYMMETRY BREAKING

� If vi+3 also outside MIS, then vi+2 could enter MIS → contradiction to MIS maximal
� vi+1 gets color 1, vi+2 color 2 if not in MIS, otherwise color 0
⇒ Legal coloring with 3 colors

[Pic: MIS to 3-coloring]

⇒ Any MIS on the oriented ring/rooted path can be turned into 3-coloring in 2 rounds. Thus,
in the class of trees and bounded-degree graphs, there are instances where MIS computation
cannot be (much) faster than 3-coloring.

5.2.2 A Fast Randomized Algorithm for MIS

Algorithm 9: Random-MIS

1 Each vertex sets bv ←⊥
2 repeat
3 pick rv uniformly at random from [0, 1], send rv to all undecided neighbors
4 if rv is maximum among undecided neighbors then
5 bv ← 1, send ”Decide-1” to all neighbors

6 on getting ”Decide-1” from at least one neighbor w do
7 bv ← 0, send ”Decide-0” to all neighbors

8 until bv ∈ {0, 1}

Phase: Iteration of the repeat-loop. Every phase consists of 2 rounds (send IDs, determine
and send ”Decide-x” messages)

Lemma 24. Random-MIS computes a feasible MIS and terminates with probability 1.

Proof. Simple proof uses basic probability facts:
� For a single pair of neighbors v and w, we have Pr[rv = rw] = 0.
� Union bound over all pairs of nodes: Pr[∃ any pair v, w with rv = rw] = 0
With probability 1: All nodes v, w have rv ̸= rw.

Thus, in every phase, with probability 1:
→ Unique node with maximum rv in every neighborhood
→ No neighboring nodes join MIS in that round
→ At least one node (maximum rv of all undecided nodes) joins MIS in that phase
→ Algorithm behaves like MIS-Rank, where rv are IDs.

Union bound: Events X1, . . . , Xk each have probability p1, . . . , pk to occur, resp. The
probability that at least one of them occurs is at most

∑
i pi. We’ll use this often implicitly.

rv are continuous variables (since [0, 1] is continuous and contains uncountable infinitely
many possible numbers). In the subsequent analysis, we assume for simplicity that there
is only a countably infinite number of possible values in [0, 1] that rv can take. Our

5.2. MAXIMAL INDEPENDENT SET (MIS) 33

random variables will be discrete and assume rational numbers. We will discuss the
bit complexity in the end and see how we can satisfy that assumption.

Goal: Analyze time complexity of Random-MIS and show it is fast!

An important tool: Linearity of Expectation.

Theorem 9 (Linearity of Expectation). Let X and Y be two discrete random variables over
R. Then

E[X + Y] = E[X] + E[Y]

Proof.

E[X] + E[Y] =
∑
X=x

x · Pr[X = x] +
∑
Y=y

y · Pr[Y = y]

=
∑
X=x

∑
Y=y

x · Pr[X = x] · Pr[Y = y | X = x]

+
∑
Y=y

∑
X=X

y · Pr[Y = y] · Pr[X = X | Y = y]

=
∑
X=x

∑
Y=y

x · Pr[(X, Y) = (x, y)] +
∑
Y=y

∑
X=x

y · Pr[(X, Y) = (x, y)]

=
∑

X=x,Y=y

(x+ y) · Pr[(X, Y) = (x, y)]

= E[X + Y]

First attempt: Show that many nodes are decided in each phase of Random-MIS.
v joins MIS only if rv is maximum in Γ1(v), which happens with probability 1/ degG(v). If v
joins the MIS, then degG(v) + 1 nodes (i.e., all of Γ1(v)) are decided ”because of v”. Hence,
by linearity of expectation:

E[Number of decided nodes] =
∑
v∈V

Pr[v joins MIS] · (Number of nodes decided because of v)

=
∑
v∈V

1

degG(v) + 1
· (degG(v) + 1) = |V | WRONG!

Complete nonsense! Problem: Nodes are overcounted when neighborhoods of joining
nodes overlap! There are graphs, where in expectation only very few nodes are decided
in some phases.

Second attempt: Show that many edges are decided in each phase of Random-MIS, where
an edge is decided if at least one of the endvertices gets decided.

Lemma 25. In a single phase, we decide in expectation at least half of the remaining unde-
cided edges.

34 CHAPTER 5. SYMMETRY BREAKING

Proof. Restrict attention to a single phase and undecided subgraph in the beginning of the
phase. W.l.o.g. G contains only undecided nodes and undecided edges.

� Suppose v joins MIS, then rv > ry for all neighbors y.
� Consider a fixed neighbor w ∈ Γ(v)
� Event (v→ w): v joins MIS and also rv > rx for all x ∈ Γ(w) \ {v}
� Let Γ′(v, w) = Γ(v) ∪ Γ(w) and note |Γ′(v, w)| = deg(v) + deg(w)
� Ordering nodes of Γ based on r gives uniform random permutation.
� Probability v has highest value in Γ′(v, w) is Pr[(v → w)] = 1/(deg(v) + deg(w))

Now we estimate the decided edges when event (v → w) occurs.
� Think of edge {u, v} as two directed edges (u, v) and (v, u)
� We say: (u, v) gets decided when u ̸∈MIS, and (v, u) gets decided when v ̸∈MIS.
� If (v → w) occurs, w ̸∈ MIS. Then there are deg(w) many edges (w, x) that are
decided, for x ∈ Γ(w)

� For each edge {v, w}, let Xv→w be random variable counting the decided directed edges
due to event (v → w).

� Clearly, Xv→w = deg(w) if (v → w) happens, and Xv→w = 0 otherwise.

Let X be total number of directed edges that get decided
� Event (v → w): No other event (u→ w), since u, v ∈ Γ(w) and rv > ru
� Directed edge (w, x) decided, then due to at most one event (v → w)
� Thus, X ≥

∑
{u,v}∈E Xu→v +Xv→u, no overcounting of directed edges

This implies

E[X] ≥ E

 ∑
{u,v}∈E

Xu→v +Xv→u

 =
∑

{u,v}∈E

E[Xu→v] + E[Xv→u]

=
∑

{u,v}∈E

Pr[(u→ v)] · deg(v) + Pr[(v → u)] · deg(u)

≥
∑

{u,v}∈E

deg(v)

deg(v) + deg(u)
+

deg(u)

deg(v) + deg(u)

≥
∑

{u,v}∈E

1 = |E|

Now an original edge gets decided as soon as at least one of its’ directed edges is decided.
Since for directed edges E[X] = |E| and there are 2 directed edges for each original edge, in
expectation at least |E|/2 original edges are decided.

Now in each phase we make good progess in deciding edges.
How long until all edges are decided?

We use another important tool: Markov Inequality

5.2. MAXIMAL INDEPENDENT SET (MIS) 35

Theorem 10 (Markov Inequality). Let X be a non-negative random variable. Then, for
any k > 1

Pr[X ≥ k · E[X]] ≤ 1

k
.

Proof. Here: X discrete variable that takes non-negative integer values in {0, 1, 2, 3, . . .},
straightforward generalization to more general non-negative variables. If Pr[X = 0] = 1,
statement is trivial. Hence, Pr[X = 0] < 1, and, thus E[X] > 0. Then

E[X] =
∞∑
i=0

Pr[X = i] · i ≥
∞∑

i=⌈kE[X]⌉

Pr[X = i] · i

≥ k · E[X] ·
∞∑

i=⌈kE[X]⌉

Pr[X = i] = k · E[X] · Pr[X ≥ k · E[X]] .

Divide by k · E[X] > 0 and eliminate E[X] > 0, gives the result.

Corollary 3. In a single phase, with probability at least 1/4 we decide at least a third of the
undecided edges.

Proof. Again suppose G is the undecided subgraph. Let
� X be random variable counting number of decided edges after the phase
� X̂ be random variable counting number of undecided edges after the phase

Now |E| = X + X̂, and due to Lemma 25

E[X̂] = |E| − E[X] ≤ |E|
2

Apply Markov Inequality with k = 4/3:

Pr

[
X ≤ |E|

3

]
= Pr

[
X̂ ≥ 2 · |E|

3

]
≤ Pr

[
X̂ ≥ 4 · E[X̂]

3

]
≤ 3

4

Thus,

Pr

[
X >

|E|
3

]
= 1− Pr

[
X ≤ |E|

3

]
≥ 1

4
.

Hence, with constant probability, we remove a constant fraction of the edges. Happens
only O(log n) times before we run out of edges.

Random variables X1, . . . , Xk are independent if for all i and (x1, . . . , xk) it holds

Pr[Xi = xi] = Pr[Xi = xi | Xj = xj for all j ̸= i]

i.e., probability that Xi = xi is independent of what happens with the other Xj.

Theorem 11. Random-MIS computes an MIS in an expected number of O(log n) rounds.

36 CHAPTER 5. SYMMETRY BREAKING

Proof. No matter how the graph, we decide a third of the edges with probability 1/4.
� Good phase: Number of undecided edges decreases by at least a third
� At most one edge remaining after t good phases, when t satisfies(

2

3

)t

|E| < 2 ⇒ |E| <
(
3

2

)t

· 2 ⇒ log3/2 |E| < t+ log3/2 2

⇒ t > log3/2 |E| − log3/2 2,

Hence, if we have

t = 5 lnn >
ln(n2)

ln(3/2)
> log3/2 |E|

good phases, then in the next phase algorithm terminates.
� How many phases until we see 5 lnn good phases?

Precise bound is tedious! Here only very brutal estimate :)
� Consider time sliced up into blocks of 40 lnn phases.
� In any block of 40 lnn phases, expected number of good phases is at least 10 lnn (as a
consequence of Corollary 3)

� Expected number of bad phases in each block at most 30 lnn.
� Apply Markov Inequality: Pr[More than 35 lnn bad phases] ≤ 30/35 = 6/7
� Thus, Pr[No 5 lnn good phases in a given block] ≤ 6/7

Compose blocks with probabilistic domination:
� Subsequent blocks are not independent
� But: Pr[No 5 lnn good phases in a given block] ≤ 6/7 for any set of 40 lnn phases.
� Using probabilistic domination, we can upper bound the property that any block in
the sequence has no 5 lnn good phases by the failure event of an independent Bernoulli
trial with failure probability 1− p = q = 6/7.

� Thus, the expected number of blocks needed to generate 5 lnn good phases is upper
bounded by the expected number of Bernoulli trials needed to produce a success event.

� The expected number of trials to a success event is 1/p = 7, so the expected number
of phases until the algorithm terminates at most 7 · 40 lnn+ 1 = 280 lnn+ 1.

� Each phase has 2 rounds, O(log n) rounds in expectation.

Some Remarks:
� Actual constant in running time nowhere near 280, more like 5, but proving this is
difficult!

� Analysis tight up to constants. There are regular graphs with, say, ∆ = n0.01 and very
few short cycles, where in almost every round, the number of undecided edges falls
only by a constant factor each round.

� Algorithms with expected running time O(log n) known since the 1980s – no algorithm
with expected time o(log n) on all graphs to this date!

� Best lower bound Ω(
√

log n/ log log n) or Ω(log∆/ log log∆), also for randomized al-
gorithms. Closing the gap is a major open problem!

� Best deterministic algorithm in time 2O(
√
logn), may end up collecting all information

about the graph in a single node using huge messages.

5.2. MAXIMAL INDEPENDENT SET (MIS) 37

Concentration Results

Expected running time sometimes not so useful. Often we rather need to be sure that by a
certain point in time the task is done (with high probablity).

With high probability (whp):
� Instance with input parameter n (e.g., number of nodes)
� An event occurs with high probability if it does so with probability 1− 1/nc for any n
and a fixed constant c ≥ 1.

� Usual statement in this course: ”Event Y occurs after O(f(n)) many rounds whp.”
� Means: Y occurs with probability 1− 1/nc, where constant c ≥ 1 can be chosen freely.
Larger choice of c increases the constants required in the O(f(n)) term.

The 1− 1/nc makes application of union bound super convenient!
Example: Event Yv = ”node v terminates” happens after O(log n) rounds whp. Hence,
probability that v runs longer is only 1/nc, for any constant c (and suitable constant in the
O-term). Then pick c′ = c− 1 and apply union bound over all n nodes. Hence, probability
that at least one node runs longer is n · 1/nc = 1/nc′ . Thus, all nodes terminate in O(log n)
rounds whp.
This trick even extends to poly(n) many events, e.g., for each edge and each node, etc.

Main tool to obtain whp results: Chernoff bound

Theorem 12 (Chernoff Bound). Let X =
∑k

i=1Xi be the sum of k independent Bernoulli
(i.e., 0-1) variables. Then, for every 0 < δ ≤ 1

Pr[X ≥ (1 + δ) · E[X]] ≤ e−δ2·E[X]/3

Pr[X ≤ (1− δ) · E[X]] ≤ e−δ2·E[X]/2 .

Corollary 4. Random-MIS terminates in O(log n) rounds whp.

Proof. Using above lemma, with prob. at least 1/4, a third of the undecided edges is decided
in each phase.

� Holds for every phase, no matter what happened in previous phases!
� Recall proof of Theorem 11
� Here: Bound number of rounds until 5 lnn good phases happen using Chernoff bound!
� For c ≥ 1, consider k = 40⌈c lnn⌉ phases.
� Let Yi = 1 when phase i is good. Note that Pr[Yi = 1] ≥ 1/4.
� Thus, number of good phases is at least Y =

∑k
i=1 Yi, where E[Y] ≥ 10⌈c lnn⌉.

Yi are not independent, but Pr[Yi = 1] ≥ 1/4 holds always, no matter what. Hence, we
can use probabilistic domination and assume that Yi are independent Bernoulli draws with
Pr[Y = 1] = 1/4. Then apply Chernoff bound with δ = 1/2:

Pr[Y < 5 lnn] ≤ Pr

[
Y <

E[Y]

2

]
≤ e−E[Y]/8 < e−1.25c lnn < n−c

Thus, the probability that Random-MIS does not terminate within k = 40⌈c lnn⌉ phases is
at most 1/nc. This implies the algorithm terminates in 2(k+1) ∈ O(log n) rounds whp.

38 CHAPTER 5. SYMMETRY BREAKING

Bit Complexity

Problems with real numbers rv
� Need possibly infinite number of bits to communicate
� Overcountably many possibilities, some formulas above need integrals (nooo! :)

Solution: Consider rv ∈ [0, 1] in bit representation rv = 0.bv1b
v
2b

v
3b

v
4 . . ., draw bits bvi ∈ {0, 1}

iteratively at random.

For a given edge {v, w} decide rv > rw or rv < rw (note rv = rw has probability 0):

� Compare leading bits
� Number of bits Xvw that must be drawn and communicated?
� Smallest number i such that bvi ̸= bwi . Since v and w draw bits independently

Pr[0.bv1b
v
2 . . . b

v
i−1 = 0.bw1 b

w
2 . . . bwi−1] =

(
1

2

)i−1

and Pr[biv ̸= biw] =
1

2

� Hence, the probability that v and w exchange exactly i bits is (1/2)i. For the expected
number of bits, we have

E[Xvw] =
∞∑
i=1

(
1

2

)i

· i = 2 ,

so for every edge in expectation only 2 bits.

Yes, but: Each v draws rv only once overall, but not once per edge, so number of bits
on edges {u, v}, {u, v}, {u,w} not independent!

� Suppose given pair of nodes v, w must exchange Xvw > (c+ 3) log2 n bits.
� The comparison of the i leading bits bv1b

v
2 . . . b

v
i and bw1 b

w
2 . . . bwi shows that Pr[Xvw >

i] = (1/2)i, so

Pr[Xvw > (c+ 3) log2 n] ≤
(
1

2

)(c+3) log2 n

=
1

nc+3

� At most n2 edges, using a union bound:

Pr[Xvw > (c+ 3) log2 n for at least one {u, v} ∈ E] <
1

nc+1

� Thus, whp in a single phase not more than (c+ 3) log2 n bits on any edge.
� Now apply another union bound over the (at most) n phases.
(actually O(log n) phases would be enough whp)

Lemma 26. Random-MIS computes an MIS in O(log n) rounds and exchanges O(log n) bits
on every edge in every round whp.

5.2. MAXIMAL INDEPENDENT SET (MIS) 39

5.2.3 Applications

Fast computation of MIS has lots of interesting applications:

Coloring:
(∆ + 1)-coloring arbitrary graphs can be done very fast.

Theorem 13. If there is an algorithm in the LOCAL model to compute an MIS on G in
time T (G), there is an algorithm to compute a (∆ + 1)-coloring on G in time O(T (G)).

Proof. Exercise.

Corollary 5. For any graph G, there is a distributed randomized algorithm to compute a
(∆ + 1)-coloring in time O(log n) whp.

Matching:
Subset of edges M ⊆ E. Constraint: No two edges in M have same endnode
Maximal matching M : No edge from E can be added to M without violating the constraint

Corollary 6. For any simple graph G, there is a distributed randomized algorithm to compute
a maximal matching in time O(log n) whp.

Idea:
� Simple graph G = (V,E) has a line graph GL = (E,L)
� GL has an edge ℓ = (e, e′) ∈ L if and only if e∩ e′ ̸= ∅ (i.e., edges become nodes and a
line-graph-edge exists if only if edges share an endnode).

� Maximal matching in G = MIS in GL.
� Simulate execution of Random-MIS in GL.

Vertex Cover:
Subset of nodes C ⊆ V . Constraint: For every edge e ∈ E must be at least one endnode in
C (can be both, but at least one)
Minimum vertex cover C∗: Vertex cover with smallest cardinality

Corollary 7. For any graph G, there is a distributed randomized algorithm to compute a
vertex cover in time O(log n) whp. The resulting vertex cover C is a 2-approximation, i.e.,
|C| ≤ 2|C∗|.

Proof. Distributed version of classic matching heuristic (recall ”Theoretische Informatik 1”):
� Compute maximal matching M as above.
� All nodes incident to matching edges join the vertex cover C.
� Minimum vertex cover C∗ as least as large as any maximal matching M (no node in
C∗ can cover two or more matching edges from M).

� Hence |C∗| ≥ |M | = |C|/2.

40 CHAPTER 5. SYMMETRY BREAKING

Chapter 6

Minimum Spanning Trees

General setup:
� Simple graph G = (V,E, ω) with weights i.e., every edge e has ω(e) ≥ 0.
� Synchronous CONGEST model.
� Every ω(e) composed ofO(log n) bits, w.l.o.g. we assume integers ω(e) ∈ {0, 1, 2, . . . , nc}
for some constant c.

� Every node knows ID and weights of every incident edge.

Goal: Compute a minimum spanning tree (MST) of G, i.e., a spanning tree T ∗ with
smallest total weight ω(T ∗) =

∑
e∈T ∗ ω(e). Every node should know its incident edges of T ∗.

Some definitions:
� Edge weights are integers represented in O(log n) bits, can be sent in one message.
� G has distinct weights: There are no two edges with same weight.
� We assume distinct weights w.l.o.g.: Tie-breaking using IDs of involved nodes.
� If T ∗ is MST of G, then every T ′ ⊆ T ∗ is called fragment of T ∗.
� Edge e = {u, v} is outgoing edge of T ′ if u ∈ T ′ and v ̸∈ T ′.
� The minimum-weight outgoing edge b(T ′) is the blue edge of T ′

(unique because of distinct weights)

Lemma 27. For G with distinct weights, let T ∗ be an MST and T ′ a fragment of T ∗. Then
b(T ′) is also part of T ∗, i.e., b(T ′) ∪ T ′ ⊆ T ∗.

Proof. Suppose not, then there is e′ ̸= b(T ′) connecting T ′ with rest of T ∗. Then, adding
b(T ′) to T ∗ gives a cycle with both e′ and b(T ′). Now add b(T ′) to T ∗ and remove e′. Due
to distinct weights, this gives a strictly cheaper spanning tree than T ∗. Contradiction.

[Pic: Example Blue Edge]

Iteratively adding blue edges is the key idea of both algorithms of Jarnik-Prim (grows T ′

starting from a source r0) and Kruskal (grows T ′ by the globally best blue edge). The
following lemma is thus obvious.

Lemma 28. G distinct weights ⇒ Unique b(T ′) for every fragment T ′ ⇒ Unique MST T ∗.

41

42 CHAPTER 6. MINIMUM SPANNING TREES

6.1 GHS Algorithm

Distributed approach by parallel addition of blue edges. Resembles Boruvka’s algorithm
for MST.

Algorithm GHS (Gallagher-Humblet-Spira) starts with singleton fragments. In each phase,
simultaneously all maximal fragments add their blue edge to T and get merged. Repeat
phase until single tree is formed.

Below is a sketch in pseudocode with some missing details, e.g., fragments can have different
size, so in Line 8 node u in fragment T ′ might need to wait for v to decide if blue edge b(T ′)
is also blue edge of v’s fragment and hence v will (eventually) be sending a merge request.
Good news: All missing details can be handled!

Algorithm 10: GHS (Gallager-Humblet-Spira)

1 Initially each node is root of own fragment. We proceed in phases:
2 repeat
3 All nodes learn fragment IDs of neighbors
4 Root rT ′ of each fragment T ′ initiates upcast to find blue edge b(T ′) = {u, v}
5 rT ′ sends message to u; while forwarding message, parent-child relations on

rT ′-u-path are inverted. u becomes temporary root of T ′

6 u sends merge request on b(T ′)
7 Fragments of u, v and blue edge b(T ′) get merged
8 if v also sent merge request on b(T ′) then
9 Either u or v (the one with smaller ID) is new fragment root

10 else
11 v becomes parent of u

12 Edge {u, v} directed accordingly
13 Newly elected roots inform their fragments (using flood/echo) about their ID

14 until single tree is formed

[Pic: Example merge of several fragments in a phase]

GHS joins fragments via blue edges. By Lemma 27 resulting tree must be the MST T ∗.

Corollary 8. GHS computes the MST T ∗.

Lemma 29. GHS needs O(log n) phases. Each phase can be implemented in O(n) rounds.

Proof. Number of phases:
By induction: In the end of phase i, every fragment contains at least 2i nodes.

� True in the beginning (phase 0), singleton fragments, 20 = 1 node each.
� In phase i, by hypothesis, each fragment has at least 2i−1 nodes.
� Every fragment is attached to some other fragment, resulting fragments have at least
2 · 2i−1 = 2i nodes.

6.2. DISTRIBUTED DUAL GREEDY 43

� Fragment with n nodes after log2 n many phases

Number of rounds per phase:
Each phase one upcast to find blue edge in old fragments, one message from root to u, and
one flood/echo in new fragments. All can be implemented in O(n) rounds. Remaining steps
per phase can be implemented in O(1) rounds.

Note: Diameter of MST fragments (wrt. number of edges) unrelated to diameter of graph
(wrt. number of edges), so number of rounds not necessarily related to Diam(G).

Theorem 14. GHS computes the MST in Time(GHS,G) = O(n log n).

Original GHS algorithm is asynchronous with message complexity O(|E| log n), which can be
improved to O(|E|+ n log n). This is a lot better than applying the synchronous algorithm
with an α-synchronizer. The fragments are used like a β-synchronizer, only exchange of
fragment IDs is costly.

6.2 Distributed Dual Greedy

Now we use red edges:
In a graph G with distinct weights, edge e ∈ E is a red edge if there is a cycle C such that
e ∈ C and e is the highest-weight edge of C.

Lemma 30. e ∈ E is a blue edge ⇔ e ∈ T ∗ ⇔ e ∈ E is not a red edge.

Proof. Exercise.

Compute BFS, upcast all edges to root for MST computation. Delete red edges on the fly.

Algorithm 11: Dual Greedy

1 Compute (unweighted) BFS-tree TB, denote root by r0
2 For each v let Ev ← Set of edges incident to v, and Sv ← ∅
3 on v is leaf or received at least one message from every child do
4 repeat
5 Add all edges received from children to Ev

6 foreach cycle C in Ev do
7 Pick heaviest edge e′ = argmaxe∈C{ω(e)}
8 Remove e′ from Ev

9 Pick cheapest known and unsent edge e′ = argmine∈Ev\Sv{ω(e)}
10 Send e′ to parent, add e′ to Sv

11 until Ev ⊆ Sv (no more unsent non-red edges)

12 r0 broadcasts MST Er0 over BFS tree

Regular upcast of all edges: O(|E| + Depth(TB)) = O(|E|) time. Dual Greedy is faster!
Intuitively, blue edges of MST are not delayed long, so red edges are quickly found and
removed. Algorithm takes only O(Time(BFS,G) + |T ∗|+Depth(TB)) = O(n) time.

44 CHAPTER 6. MINIMUM SPANNING TREES

For simplicity re-number rounds: Round 1 is first round after end of BFS compu-
tation. Easy observation:

Lemma 31. Every vertex v starts sending messages upwards at round L̂(v).

We call a node active if it still runs the repeat-loop.

Lemma 32.
(a) For each child u of v, u active at round t, Ev at the start of round t contains at least

one edge sent by a child of v.
(b) v sends edge of weight ω0 at round t ⇒ All edges v received by active children in round

t− 1 have higher weight.
(c) If v sends edge of weight ω0 at round t ⇒ Any edge v will learn in later rounds has

higher weight.
(d) v sends edges in increasing order of weight.
(e) v sends a cycle-free subset of edges.

Proof. Induction over tree level and time. All claims (a) – (e) hold for leaf nodes.
Consider intermediate vertex v, assume all claims (a) – (e) hold for all children of v, and for
v until round t− 1.
(a) Let Av be set of m edges sent by v to parent during first m = t − L̂(v) rounds it was

active (i.e., rounds L̂(v), . . . , t − 1). Consider active child u, let Au be edges sent to v
until round t− 1. u is active on round t− 1, so transmitted without pause since round
L̂(u) ≤ L̂(v)− 1. Hence, |Au| ≥ m+ 1.
Hypothesis: (e) holds for u and for v until round t − 1. Hence, both Au and Av are
cycle-free. Since |Au| > |Av|, there is at least one edge sent by u that is not in a cycle
with Av and has not been sent by v. Thus, there is at least one edge (by u or another
child) in Ev that has not been sent.

(b) Consider active child u. u sent et in round t − 1. There is earlier round t′ ≤ t − 1,
where u sent et′ , which is still in Ev at time t and has not been sent (or an even cheaper
one, due to (a)). Hypothesis (d) for u: ω(et′) ≤ ω(et). v transmits cheapest edge, so
ω0 ≤ ω(et′).

(c) Follows directly from (b).

(d) Follows directly from (c) and transmitting cheapest edges.

(e) Hypothesis: (d) + (e) holds for v for all rounds until t−1. Suppose e sent by v in round
t closes a cycle with the edges sent previously by v. Then e closes a cycle in Ev upon
arrival at v. Due to (d) and (e), e must be the red edge in that cycle, so e is not sent in
round t, contradiction.

The following lemma follows directly from (a) above:

Lemma 33. After v becomes non-active, it does not learn new edges from its children.

6.3. GKP ALGORITHM 45

Overall, this implies:

Theorem 15. Dual Greedy computes the MST in Time(DualGreedy,G) = O(n).

Proof. Removal of red edges never hurts the MST⇒ Root receives all MST edges. Lemma 31:
Root starts getting messages at time Time(BFS,G) + Depth(TB). Lemma 32 (e): Root
receives at most |T ∗| = n − 1 edges from each child in a pipelined consecutive fashion.
Time(DualGreedy,G) = O(Time(BFS,G) +Depth(TB) + |T ∗|) = O(n).

This algorithm is asymptotically optimal for some graphs with large diameter.

Lemma 34. Every distributed algorithm to compute an MST on the ring requires Ω(n) many
rounds.

Proof. Exercise.

6.3 GKP Algorithm

Advantages and disadvantages of previous algos:

GHS: Reduces number of maximal fragments by a factor of 2, grows the MST quickly (fast!)
Possibly large diameter and coordination overhead inside fragments (slow!)
Fast initially, then gets slower due to larger components

Dual Greedy: If BFS-tree is path, grows the MST one blue edge at a time (slow!)
Processing of edges in pipelined fashion (fast!)
Slow initially, then gets faster due to removal of red edges

Algorithm GKP (Garay-Kutten-Peleg) combines advantages. Initially, grows fragments
quickly, but more carefully than GHS. When all maximal fragments have size of

√
n, uses

Dual Greedy on the inter-fragment edges to quickly finish MST construction.

Algorithm 12: GKP (sketch)

1 Construct unweighted BFS-tree, determine and inform all nodes about n
2 T ← Set of all singleton fragments // stays forest throughout

3 for i = 0, . . . , ⌈log2
√
n⌉ do

4 C ← Set of maximal fragments (i.e., components) of forest T , and EC ← ∅
5 Each T ′ ∈ C of diameter at most 2i finds blue edge b(T ′), adds it to EC

6 Find maximal matching M in graph (C, EC), add edges of M to T
7 if T ′ ∈ C of diameter at most 2i has no incident edge in M then add b(T ′) to T

8 Let G′ = (V,E ′, ω′) be weighted multigraph obtained when contracting edges in T
(delete loops, keep multi-edges)

9 Run Dual Greedy on G′, add chosen edges to T

46 CHAPTER 6. MINIMUM SPANNING TREES

Phase: Iteration of the Repeat-Loop.
Contraction of edge e = {u, v}: Merge u and v into a single vertex, e becomes a loop.

During for-loop, GKP builds fragments only via blue edges. Call of Dual Greedy in line 9
adds exactly the MST among remaining maximal fragments. By Lemma 27, this implies:

Corollary 9. GKP computes the MST T ∗.

Time complexity for graph G′ and Dual Greedy (lines 8-9):

Lemma 35. Suppose in line 8, T contains at most k components, each component has
diameter at most Diam(T). Then lines 8-9 take at most O(Diam(G) + Diam(T) + k)
rounds.

Proof. Line 8: For each of the k remaining components, find and broadcast smallest ID of
any node in the component as the component ID. Each node knows which edges go within
the component or to another one. Effectively ”contracts” all inner-component edges and
takes at most O(Diam(T)) time.

Line 9: Dual Greedy applied on BFS tree of the entire (uncontracted) graph G. In
pipelined upcast, each node v only places incident inter-component edges into Ev (and avoids
upcasting ”contracted” inner-component edges). Up to k2 inter-component edges, but only
k−1 remain for MST among components. Analysis for Theorem 15 shows that the algorithm
terminates in time O(Diam(G) + k).

[Pic: Example Fragments, Contraction, Final BFS and Upcast]

Time complexity of the for-loop (lines 3-7): Show that
� components do not get large diameter (Lemma 36)
� fast implementation of each phase in the loop (Lemma 37)
� only few components at the end of the loop (Lemma 38)

Lemma 36. At the end of phase i, each component of T has diameter at most O(2i).

Proof. Induction hypothesis: Suppose at the end of phase j = 1, . . . , i − 1, all components
have diameter at most 12 · 2j (trivially true in phase 1). Now consider phase i.

� Graph (C, EC) with all components and blue edges for (≤ 2i)-diameter components
� Pick maximal matching M in (C, EC)
� Unmatched components add their blue edge, denote these edges by Ms

� Since M is maximal, unmatched components attached to matched components
� For e = {C1, C2} ∈M , edges of Ms attached directly to C1 and C2

� New components have diameter at most 3 w.r.t. M ∪Ms

� For each new component, at most one component from C with diameter more than 2i:
Components with larger diameter do not add their blue edges to EC , so no edges in
M ∪Ms between two such components.

� Total diameter of new component:

12 · 2i−1 + 3 + 3 · 2i = 6 · 2i + 3 · 2i + 3 ≤ 12 · 2i .

6.3. GKP ALGORITHM 47

[Pic: Example, Matching, Attach unmatched nodes, resulting diameter]

Lemma 37. Each phase can be implemented in time O(2i log∗ n)

Proof. Previous lemma: Components in phase i have size O(2i). For each component, each
of the following can be done using flood/echo and convergecast in O(2i) time:

� Find root node (smallest ID)
� Build inner-component BFS-tree from root inside the component
� Determine if size is ≤ 2i, if yes determine blue edge of component.

This way we determine EC . Now build a maximal matching in (C, EC) as follows:
� Each edge in EC directed away from the component that chose it.
� (C, EC) becomes a directed graph, each node outdegree 1
� If we follow any directed path of blue edges in (C, EC), the weights of blue edges strictly
decrease. Hence, components of (C, EC) are rooted trees with “root” possibly being
a single blue edge chosen by both incident components

� Determine a root node for every tree in (C, EC), simulate the 3-coloring algorithm for
trees, takes O(log∗ n) steps

� Each component acts as a single node in coloring algorithm, coordinated by its’ root
with broad-/convergecast over inner-component BFS tree

� Hence, each step of the coloring algorithm needs O(2i) rounds
� Determine maximal matching M of (C, EC) from 3-coloring (c.f. Exercises). in O(1)
steps, i.e., O(2i) rounds

[Pic: Forest structure of (C, EC)]

Adding edges of unmatched components and component merge (i.e., informing all nodes
about new component structure) in time O(2i).
Overall: O(2i log∗ n) rounds per phase.

Lemma 38. At the end of the last phase ⌈log2
√
n ⌉, there are at most

√
n components in

T .

Proof. By induction: At the end of phase i, every component contains at least 2i nodes.
Every component of size at most 2i is joined in phase i with another component. Same
induction as for GHS in Lemma 29. Hence, after ⌈log2

√
n⌉ phases, every component has at

least 2⌈log2
√
n⌉ ≥ 2log2

√
n =
√
n nodes ⇒ at most n/

√
n =
√
n components.

Theorem 16. GKP computes the MST in Time(GKP,G) = O(Diam(G) +
√
n · log∗ n).

Proof. Build BFS-tree, determine n, inform all nodes: Time O(Diam(G)). for-loop phase i:
Time O(2i log∗ n). for-loop ends with at most

√
n components, so finish with Dual Greedy:

Time O(Diam(G) +
√
n). In total:

Time(GKP,G) = O(Diam(G)) +O(Diam(G) +
√
n) +

⌈log2
√
n⌉∑

i=0

O(2i log∗ n)

= O(Diam(G) +
√
n) +O(log∗ n) ·

⌈log2
√
n⌉∑

i=0

2i

48 CHAPTER 6. MINIMUM SPANNING TREES

< O(Diam(G) +
√
n) +O(log∗ n) · 22+log2

√
n

= O(Diam(G) +
√
n log∗ n)

6.4 Lower Bound

GKP running time O(Diam(G) +
√
n log∗ n). Can we improve upon these terms?

Diam(G): Not really :) If using unlimited messages, then in the LOCAL model with simul-
taneous wakeup and topology knowledge (only weights unknown), running time can be
refined to a notion called cycle-radius that determines the running time (for details,
see Section 24.1 in the Peleg book).

√
n log∗ n: G must have low diameter to beat this. There is a lower bound of Ω(

√
n/ log2 n)

in graphsG withDiam(G) = O(log n). For diameter 1 (aka complete graphs), however,
we can even solve the problem in time O(log n). (see Exercises)

Let’s discuss the second term. The following is a slightly better lower bound, but allows
somewhat larger diameter Diam(G) = O(n1/4).

Theorem 17. There is a class of n-node graphs G with Diam(G) = O(n1/4) such that every
distributed algorithm for MST in the synchronous CONGEST model needs time Ω(

√
n/ log n).

Note: For these graphs GKP has running time O(
√
n log∗ n).

Running time depends on auxiliary Mailing Problem in the CONGEST model: Given
graph G with source s, receiver r, and k-bit message at s, inform r about the k-bit message
of s.

Given integer m ≥ 1, we build a hard graph HGm for the m2-bit mailing problem:
� Single highway of length m, i.e., a path H = (h0, hm, h2m, . . . , hm2), where h0 = s and
hm2 = r.

� m2 many simple paths of length m2 edges each. Path P i = (vi0, v
i
1, v

i
2, . . . , v

i
m2), for

i = 1, . . . ,m2.
� Highway node hj is center of star Sj, i.e., hj connected to one node in each of the
m2 paths. Star Sj composed of edges {hj, v

i
j} for each j = 0,m, 2m, 3m, . . . ,m2 and

all i = 1, . . . ,m2.
Graph has n = Θ(m4) nodes and diameter Diam(HGm) = O(m) = O(n1/4).

Intuition: Cannot route all m2 bits quickly over the highway edges. Alternative routes along
star edges and (sub-)paths of some P i are too long to be helpful.

Prove the intuition formally for explicit delivery algorithms (only transmit bits as they are).

Lemma 39. For every m ≥ 1, no explicit delivery algorithm can solve the m2-bit mailing
problem on the hard graph HGm in time o(m2/ logm).

Proof. Consider bit xi going from s to r, let Qi be the path taken.

6.4. LOWER BOUND 49

� Qi goes through every star Sj.
� From Sj to Sj+m either Qi uses highway edge or some path P i (or even longer path,
but this only makes things worse)

� ℓi number of highway edges in Qi ⇒ |Qi| ≥ (m− ℓi) ·m+ ℓi time needed for path Qi

� If there is bit xi with ℓi ≤ ⌊m/2⌋, then |Qi| ≥ m2/2 and we are done.
� Otherwise, all ℓi ≥ ⌊m/2⌋, i.e., every bit uses at least half of the highway edges

� Summing over all paths Qi:
∑m2

i=1 ℓi ≥ m3/2.
� Highway H has m edges, at least one edge traversed by at least m2/2 bits.
� Since message size is O(log n), this requires Ω(m2/ log n) = Ω(m2/ logm) rounds.

More generally: Arbitrary algorithms may combine bits, manipulate them, do arbitrary
computation, etc. Still, lower bound for the mailing problem applies. Rough proof idea:

� Consider possible states of vertex v (state contains all local data, i.e., input, history,
messages it received, etc.)

� Initially, every vertex at unique initial state. Only sender s has 2m
2
possible states

based on its m2-bit vector
� Over time more possible executions, hence more possible states at each vertex
� At the end, r must know the bit vector, so be in one of 2m

2
possible states

� Growth process of states is slow, forcing algorithm to spend at least Ω(m2/ logm) time
until set of possible states of r grows to 2m

2
.

� Proof uses fundamental insights from communication complexity

Lemma 40. For every m ≥ 1, no distributed algorithm can solve the m2-bit mailing problem
on the hard graph HGm in time o(m2/ logm).

Relation to MST:

Proof of Theorem 17. Idea: m2-bit vector corresponds to incident weights at s. Must become
known to r to decide which of his incident edges are in MST of HGm (global cycle property
of MST). Formally, edge weights are as follows:

� Highway H: All edges ω(e) = 0
� Path P i for i = 1, . . . ,m2: All edges ω(e) = 0
� Star Sj for j = m, 2m, . . . , (m− 1)m: All edges ω(e) =∞
� Star Sm2 with root r: All edges ω(e) = 2
� Star S0 with root s: For i = 1, . . . ,m2 we have

ω({s, vi0}) =

{
1 if bit xi = 0

3 otherwise.

MST T ∗ contains:
� all edges from highway H and paths P i, but no star edge from S1, . . . , S(m−1)m

� For star S0 at s: Edge {s, vi0} ∈ T ∗ if and only if xi = 0 in the bit vector.
� For star Sm2 at r: Edge {r, vim2} ∈ T ∗ if and only if xi = 1.

To determine incident MST edges, r must learn the bit vector from s. Mailing problem
implies the lower bound of Ω(m2/ logm) = Ω(

√
n/ log n).

50 CHAPTER 6. MINIMUM SPANNING TREES

Chapter 7

Distance and Route Approximation

General setup again:
� Simple graph G = (V,E, ω) with edge weights ω(e) > 0.
� Synchronous CONGEST model, every node knows ID and weights of incident edges.
� ω(e) composed of O(log n) bits. We let ω(e) ∈ {1, 2, . . . , nc} for some constant c.
� For most of the chapter, actually discuss unweighted graphs with ω(e) = 1.

Goal: Compute all-pairs-shortest-paths (APSP). At the end of the algorithm every node
u needs to have a routing table, which contains for every other node v ̸= u (1) the shortest
distance dist(u, v) from u to v, and (2) the neighbor of u on a shortest path from u to v.

For α ≥ 1, an α-approximation to APSP produces a routing table for every u such that
the entries d(u, v) satisfy dist(u, v) ≤ d(u, v) ≤ α · dist(u, v) for every node v ̸= u, and the
table gives the neighbor of u on a path to v of length at most d(u, v).

For APSP there are near-linear lower bounds for time complexity, even for unweighted
graphs.

Theorem 18. Any deterministic α-approximation to APSP in the synchronous CONGEST
model requires Ω(n/ log n) rounds, even in trees of depth 2.

Proof Idea: A tree with root node, two children, and n− 3 grandchildren. All edge weights
1. Communicate the arbitrary distribution of the n− 3 grandchildren to the root ⇒ Many
bits must be transfered ⇒ Many rounds necessary. (Exercise)

Corollary 10. Any randomized α-approximation to APSP in the synchronous CONGEST
model requires Ω(n/ log n) rounds, even in trees of depth 2.

Proof Idea: Consider any deterministic algorithm on a tree as in the previous proof, where
grandchildren are attached uniformly at random to one of the two children. After o(n/ log n)
rounds, probability for correct output is very small. Apply Yao’s principle. (Exercise)

Similar examples give a lower bound of Ω(n) for trees with arbitrary weights. Even if we
only want distances (and not the paths), a linear lower bound applies.

51

52 CHAPTER 7. DISTANCE AND ROUTE APPROXIMATION

7.1 Exact APSP in Unweighted Graphs

Trivial solution: Sequentially apply BFS tree algorithms from Chapter 4.1, overall time
complexity O(n ·Diam(G)).

Pipelined Bellman-Ford Algorithm
� solves APSP in unweighted graphs in Time(PipeBF,G) = n+O(Diam(G))
� even if only a subset S ⊆ V of nodes are sources
� solves single-source shortest path in parallel for every source s ∈ S
� based on a comparison of distance/node pairs (d, u) ∈ N0× I, where I is the numerical
ID space of the nodes. Then

(d, u) > (d′, v) ⇔ (d > d′) ∨ ((d′ = d) ∧ (u > v))

� every vertex v maintains list Lv of distance/source pairs sorted in ascending order
� also v maintains F (s) = neighbor on shortest path to source s ∈ S

Algorithm 13: PipeBF

1 Build BFS tree TB, inform all nodes about n and d = Depth(TB)
2 H ← 2d, K ← n
3 if v ∈ S then Lv ← {(0, v)} else Lv ← ∅
4 for i = 1, . . . , H +K − 1 do
5 (du, u)← smallest element of Lv not sent before (⊥ if there is none)
6 if (du, u) ̸=⊥ then send (du + 1, u) to all neighbors
7 foreach (du, u) received from neighbor w do
8 if there is no (d′u, u) ∈ Lv with d′u ≤ du then
9 attach Lv ← Lv ∪ {(du, u)} and set F (v, u)← w

10 if there is (d′u, u) ∈ Lv with d′u > du then remove Lv ← Lv \ {(d′u, u)}

Some notation/definitions:
� Lr

v is list at the end of round r, final list Lv = {(dist(v, s), s) | s ∈ S}
� Lv(h) contains only entries of final list Lv with dist(v, s) ≤ h.
� Lv(h, k) contains only smallest k entries of Lv(h)

We show correctness by induction: After r rounds, consider any h, k ≥ 1 with h+ k ≤ r+1.
Then the first |Lv(h, k)| entries of Lv are correct.

Lemma 41. If (dw, w) ∈ Lr
v for any r ≥ 0, then w ∈ S and dw ≥ dist(v, w). If Lv(h, k) ⊆ Lr

v,
it is the head of list Lr

v.

Proof.
� Never add entries for nodes v ̸∈ S.
� Initially, every s ∈ S has only (0, s) ∈ L0

s.
� Increase d-values by 1 for each hop and each round. dist(v, s) ≤ ds for all (ds, s) ∈ Lr

v.

7.1. EXACT APSP IN UNWEIGHTED GRAPHS 53

� For each s, the entries (ds, s) ∈ Lv are monotonically decreasing in ds over time.

Lemma 42.

Lv(h, k) ⊆ {(dist(w, s) + 1, s) | (dist(w, s), s) ∈ Lw(h− 1, k) ∧ {v, w} ∈ E} ∪ {(0, v)}

Proof.
� (dist(v, v), v) = (0, v), so v ∈ S is covered.
� Suppose (dist(v, s), s) ∈ Lv(h, k) for some s ̸= v
� w is neighbor of v on shortest path from v to s, then dist(w, s) = dist(v, s)− 1 ≤ h− 1.
� Suffices to show: (dist(w, s), s) ∈ Lw(h− 1, k). Assume otherwise for contradiction.
� Then there are k pairs (dist(w, s′), s′) ∈ Lw(h−1, k) with (dist(w, s′), s′) ≤ (dist(w, s), s)
� Hence, (dist(v, s′), s′) ≤ (dist(w, s′) + 1, s′) ≤ (h, s′). If dist(v, s) = dist(v, s′) then it
must be that dist(w, s) = dist(w, s′) and s′ < s.

� Therefore, also for v we have (dist(v, s′), s′) < (dist(v, s), s).
� There are k pairs of this kind, (dist(v, s), s) is not part of Lv(h, k) - contradiction.

[Pic: Distance List]

Lemma 43. For every v ∈ V , r = 0, . . . , H +K − 1 and h+ k ≤ r + 1
1. Lv(h, k) ⊆ Lr

v and
2. v has sent Lv(h, k) by the end of round r + 1.

Proof. By induction on r. Both statements hold trivially for k = 0. They also hold for h = 0
and all k, since Lv(0, k) = {(0, v)} if v ∈ S and ∅ otherwise.

� Suppose lemma holds for r, consider round r + 1
� h = 0 covered above, so let h > 0.
� By hypothesis: For h + k ≤ r + 1, node v received all elements from Lw(h− 1, k + 1)
and Lw(h, k) of all neighbors w.

� Lemma 42: v received all elements from Lv(h, k + 1) and Lv(h+ 1, k)
� Lemma 41: Lv(h, k) always head of list ⇒ Part 1. for h+ k ≤ (r + 1) + 1.

� Lv(h, k) ⊆ Lr+1
v for all h + k ≤ r + 2, head of the list, algorithm sends next unsent

element from Lv(h, k) if there is any
� By hypothesis: v sent Lv(h, k − 1) during first r rounds
� Only elements Lv(h, k) \ Lv(h, k − 1) are missing, but |Lv(h, k) \ Lv(h, k − 1)| ≤ 1.
� At most one element from Lv(h, k) remains to be sent and will be in round r + 1.
� Thus part 2. holds for h+ k ≤ (r + 1) + 1.

Theorem 19. PipeBF solves APSP in unweighted graphs in Time(PipeBF,G) = n +
O(Diam(G)).

Proof. Build BFS tree TB rooted at the node with smallest ID. Determine n and d =
Depth(TB) ≤ Diam(G) ≤ 2d. Broadcast them to all nodes. Takes O(Diam(G)) rounds.
Then root broadcasts a start round r0 ∈ O(Diam(G)), where all nodes simultaneously start
the for loop. For APSP we have S = V . For Lv = Lv(Diam(G), n) = Lv(2d, n), Lemma 43
shows that PipeBF has correct output.

54 CHAPTER 7. DISTANCE AND ROUTE APPROXIMATION

7.2 APSP with Relabeling in Unweighted Graphs

Running time of PipeBF essentially best possible, even in trees with constant depth.
Problem: Bottleneck links with lots of messages to identify correct IDs in the subtree.

What if we can relabel the graph and assign routing labels (i.e., second set of IDs)? This
could enable us to compute and represent routing tables more compactly.

APSP with relabeling: Every node u needs to output an ID λ(u) and a routing table
that, given any other ID λ(v) ̸= λ(u), delivers a neighbor of u on the shortest u-v-path.

As a warm-up let’s consider trees.

Lemma 44. Given a tree T , we can compute in O(Depth(T)) rounds for every node u and
every node v the neighbor of u on a shortest u-v-path, and an upper bound on dist(u, v).

Proof. We assign a unique ID label idLabel(v) ∈ {1, . . . , n} to every node and determine all
routing tables. Idea: Enumerate tree nodes in preorder (DFS style). Distributed implemen-
tation:

1. For each v determine number of nodes in subtree Tv. Single upcast in timeO(Depth(T)).
2. Root r0 gets idLabel(r0) = 1. Assigns each children v mutually disjoint consecutive

intervals of |Tv| integers in {2, . . . , n}.
3. Recursive application: v takes first number from assigned interval, paritions rest in

consecutive intervals for children
4. In the top-down recursion, the distance from root can also be tracked. Final node

labels are pairs (ID label, distance to root).
Routing tables: Consecutive intervals for ID labels of children subtrees. Given query label
λ(v) = (idLabel(v), dist(v, r0)) at node u, route to child whose interval contains idLabel(v).
If such a child does not exist, route to parent. Upper bound on dist(u, v) is given by
dist(u, r0) + dist(v, r0).

[Pic: Tree with label intervals, distance incorporated into node label]

For general graphs, consider approximate APSP (with relabeling). Idea:
� Determine a small set S of landmark nodes, sampled uniformly at random.
� Each node v learns: (1) closest landmark node sv ∈ S, (2) next hop on short path for
every node closer than some threshold value, (3) next hop on shortest path for every
landmark s ∈ S no matter how far away.

� Landmarks organize associated nodes via tree relabeling as in previous lemma
� Node label of v contains:
ID of sv, bit indicating v ∈ S, label for routing tree of sv.

When dist(v, w) is small, v knows shortest path to w. Otherwise, w is far away, ok to route
via landmark sw (extracted from known label λ(w))

[Pic: Landmarks and relabeling within Vs for every landmark s]

How to route messages from v to a node with label λ(w):

7.2. APSP WITH RELABELING IN UNWEIGHTED GRAPHS 55

Algorithm 14: 5-APSP

1 Determine n and d ∈ [Diam(G), 2 ·Diam(G)], inform all nodes
2 Let c be a sufficiently large constant

3 Sample each node into landmark set S ⊆ V independently w. prob. c
√

log n/n
4 Determine |S|, inform all nodes
5 Add to each ID v a bit bv indicating if v ∈ S
6 Use PipeBF with source set S to compute Lv(d, |S|) for all v ∈ V
7 for each v ∈ V set sv ← argmins∈S dist(v, s)
8 for each s ∈ S compute labels λs(v) for routing from/distances to root s of (partial)

BFS tree with nodes Vs = {v | sv = s}
9 Relabel each v ∈ V by λ(v)← (v, sv, λsv(v))

10 Use PipeBF with source set V to compute Lv(
√
n log n,

√
n log n) for all v ∈ V

1. λ(w) contains: ID w (appended with a bit if w ∈ S), ID sw, and tree label λsw(w).
Tree label λsw(w) contains distance dist(sw, w).

2. If there is entry (dist(v, w), w) ∈ Lv(
√
n log n,

√
n log n) for sources V , then v knows

dist(v, w) and the next hop on the shortest path.
3. If not, we route from v to sw using Lv(d, |S|) = Lv(Diam(G), |S|) and then from sw

to w using tree label λsw(w). Distance is estimated as dist(v, sw) + dist(sw, w).

Every path is 5-approximate if for every v, the closest source sv is close enough:

Lemma 45. Suppose (dist(v, sv), sv) ∈ Lv(
√
n log n,

√
n log n) for all v ∈ V , then algorithm

5-APSP computes a 5-approximate solution to APSP with relabeling.

Proof. Consider a node v and a query node w.
� If (dist(v, w), w) ∈ Lv(

√
n log n,

√
n log n), then distance and path are optimal.

� Otherwise, since (dist(v, sv), sv) ∈ Lv(
√
n log n,

√
n log n) we know

⇒ (dist(v, sv), sv) ≤ (dist(v, w), w)
⇒ dist(v, sv) ≤ dist(v, w).

� Since sw is source closest to w, we have dist(w, sw) ≤ dist(w, sv).
� Use triangle inequality:

dist(v, sw) + dist(sw, w) ≤ dist(v, w) + dist(w, sw) + dist(sw, w)

≤ dist(v, w) + 2 dist(w, sv)

≤ dist(v, w) + 2(dist(w, v) + dist(v, sv))

≤ 5 dist(v, w)

The condition of the lemma and hence the 5-approximation holds w.h.p.

Lemma 46. W.h.p. it holds (dist(v, sv), sv) ∈ Lv(
√
n log n,

√
n log n) for all v ∈ V .

Proof. Rather direct application of Chernoff bounds:
� S sampled uniformly at random with prob. c

√
log n/n

56 CHAPTER 7. DISTANCE AND ROUTE APPROXIMATION

� Consider any given set I of
√
n log n nodes, then E[|S ∩ I|] ≥ c log n

� Chernoff bound: Pr[|S ∩ I| ≤ c(log n)/2] ≤ e−Ω(c logn) = n−Ω(c)

� Nodes indicated by list Lv(
√
n log n,

√
n log n) is such a set I

� Hence, sv contained in the list with probability 1− n−Ω(c)

� Choose constant c large enough and apply a union bound over all nodes v ∈ V .
� Joint event that all (dist(v, sv), sv) ∈ Lv(

√
n log n,

√
n log n) occurs whp

Remains to analyze time complexity of the algorithm. By previous lemma, the BFS trees
rooted at nodes s ∈ S are not too deep. Then we analyze the time complexity of each step
in the algorithm.

Corollary 11. W.h.p. the partial BFS trees rooted at nodes s ∈ S containing nodes Vs all
have depth O(

√
n log n).

Theorem 20. Algorithm 5-APSP computes a 5-approximation for APSP with relabeling in
unweighted graphs in Time(5-APSP,G) = O(Diam(G) +

√
n log n) w.h.p.

Proof. Concentrate only on the steps with non-local computations:
� Compute global BFS tree TB, set d = 2Depth(TB), inform nodes of n and d.
Time: O(Diam(G))

� Determine |S|, inform all nodes. Time: O(Diam(G))
� Lv(d, |S|) by PipeBF. |S| ∈ O(

√
n log n) whp. Time: O(Diam(G) +

√
n log n) whp

� Compute partial BFS trees and labels. Time O(Diam(G) +
√
n log n) whp

(by Lemma 44 and Corollary 11)
� List Lv(

√
n log n,

√
n log n) obtained by discarding any entry (dw, w) with dw >

√
n log n

and truncating to (at most)
√
n log n elements. Time: O(Diam(G) +

√
n log n)

7.3 Weighted Graphs

Reduction via Rounding Trick: Round the weights up to a power of (1 + ε) for a fixed
constant 0 < ε ≤ 1 to turn the instance into an ”unweighted” instance.

Notation/Definition:
� ωmax = maxe∈E ω(e) maximum weight of any edge
� Fix a constant 0 < ε ≤ 1. We denote by imax = ⌈log1+ε ωmax⌉. For i = 0, 1, . . . , imax,

⌈⌈x⌉⌉i = (1 + ε)i
⌈

ω(e)

(1 + ε)i

⌉
is x rounded up to multiples of (1 + ε)i.

� Rounded graph Gi = (V,E, ωi): All weights rounded up to multiples of (1 + ε)i, i.e.,
ωi(e) = ⌈⌈ω(e)⌉⌉i. Distance disti is distance in Gi wrt. rounded weights

Compare original distances in G and rounded distances in Gi.

7.3. WEIGHTED GRAPHS 57

� Let hop(v, w) be the number of edges on the shortest path between v and w, i.e., the
”unweighted length” of the (weighted) shortest path. dist(v, w) and hop(v, w) can be
very different.

� Obviously: disti(v, w) ≥ dist(v, w).
� As i increases, (1 + ε)i gets bigger. Weights in Gi get more coarse-grained, more and
more edge weights turn into the first multiple of (1 + ε)i

� As i increases disti(v, w) turns into (1 + ε)i · hop(v, w)
� There is a ”sweet spot” such that (1) disti(v, w) ≤ (1 + ε) · dist(v, w), and also (2)
disti(v, w) is roughly (1 + ε)i · hop(v, w)

Lemma 47. For

i(v, w) = max

{
0,

⌊
log1+ε

(
ε · dist(v, w)
hop(v, w)

)⌋}
,

we have
1. disti(v,w)(v, w) ≤ (1 + ε) · dist(v, w)
2. (1 + ε) · dist(v, w) ≤ (1+ε)2

ε
· (1 + ε)i(v,w) · hop(v, w)

Proof. If i(v, w) = 0, then disti(v,w)(v, w) = dist(v, w). Otherwise

disti(v,w)(v, w) ≤ dist(v, w) + (1 + ε)i(v,w) · hop(v, w)

≤ dist(v, w) + (1 + ε)log1+ε(
ε·dist(v,w)
hop(v,w)) · hop(v, w)

≤ dist(v, w) + ε · dist(v, w)

This proves part 1. For part 2.

dist(v, w) =
hop(v, w)

ε
· ε · dist(v, w)

hop(v, w)

≤ hop(v, w)

ε
· (1 + ε)i(v,w)+1

=
1 + ε

ε
· (1 + ε)i(v,w) · hop(v, w)

Theorem 21. For any constant ε > 0, there is a distributed algorithm that computes a
(1 + ε)-approximation for APSP in O(n log n) rounds.

Proof. Approach: Determine largest edge weight, locally round edge weights, apply PipeBF
algorithm sequentially for all rounded graphs Gi, for i = 0, . . . , imax.

Consider the graphs Gi:
� Replace edge e of weight k · (1 + ε)i by virtual path of k edges with weight 1.
� Results in unweighted graph G̃i

� Suppose we apply PipeBF, let Li,v(h, k) the list for G̃i

� By Lemma above: Consider the constant c = ⌈(1+ε)2/ε⌉. In Li(v,w),v(c·hop(v, w), n) =
Li(v,w),v(cn, n) there is an entry (d, w) such that (1 + ε)i(v,w) · d ≤ (1 + ε) · dist(v, w).

� For every i we have

58 CHAPTER 7. DISTANCE AND ROUTE APPROXIMATION

1. dist(v, w) ≤ (1 + ε)i · d
2. (d, w) ∈ Li,v(cn, n) (since weights get rounded up)
3. i(v, w) ≤ imax (since ε · dist(v, w)/hop(v, w) ≤ ωmax)

� This implies

dist(v, w) ≤ min
i=0,...,imax

{(1 + ε)id | (d, w) ∈ Li,v(O(n), n)}

≤ (1 + ε) · dist(v, w)

Hence, if we run the algorithm for all i, we will find a distance value and a path that
respresent a (1 + ε)-approximation for the true distance. The number of graphs Gi we need
to consider is bounded logarithmically by the largest edge weight, which is by assumption:

imax = ⌈log1+ε ωmax⌉ ≤ log1+ε n
c ∈ O(log n)

Overall, G̃i can have up to nc+2 virtual nodes, but we need to run PipeBF only to compute
the list entries (d, w) with d ≤ cn for original nodes from G. Hence, PipeBF needs only O(n)
rounds.

Chapter 8

Packet Routing

(Synchronous) Store-and-Forward Packet Routing:
� Each packet p has a source node sp and a target node tp. Initially located at source sp
� Full Duplex: Every round, an edge can send at most one packet in each direction
� Minimize number of rounds until last packet is delivered

Two Problems:
Path Selection Problem: Given a set of packets with sources and targets, select an sp-tp-

path for every packet p
Packet Scheduling Problem: Given a set of packets and a collection P of paths (one for

each packet), determine which packet to forward on which edge in which round.

Clearly, time to route packets critically depends on trivial bottlenecks
� Maximum distance of any chosen path for any packet p
� Maximum number of packets delivered from/to a single node

To uncover structural bottlenecks in the network, we focus on Permutation Routing:
� n packets, every node source of exactly one packet and target of exactly one packet
� Routing problem specified by a permutation π : V → V : Packet at source node v to
be delivered to target node π(v)

Let’s consider a warm-up: Permutation Routing on Mesh Networks.

Mesh Network M(ℓ, d) (d-dimensional mesh of side length ℓ)
� M(ℓ, d) = ({0, 1, ..., ℓ− 1}d, E) with

E = {{a, b} | ∃i ∈ {0, 1, ..., d− 1} : |ai − bi| = 1 and aj = bj, for j ̸= i}

� M(ℓ, 1): Path of ℓ nodes; M(ℓ, 2): ℓ× ℓ grid; M(ℓ, 3): ℓ× ℓ× ℓ cube
� M(ℓ, d): ℓ copies of M(ℓ, d− 1). The ℓ copies of the same node of M(ℓ, d− 1) form a
path in dimension d.

� n = ℓd nodes, d · ℓd − d · ℓd−1 edges, diameter is d · (ℓ− 1)
� Observe: M(2, d) is d-dimensional hypercube

A simple and attractive strategy: Dimension-by-dimension routing

59

60 CHAPTER 8. PACKET ROUTING

� All packets are routed in parallel along the paths in dimension 0 to target node in
dimension 0. Then all packets routed in parallel along the paths in dimension 1 to
target node in dimension 1. Then dimension 2, 3, 4 etc.

� If several packets to be routed on one edge in same direction: Farthest-first routing
– the packet that has the longest distance to target in the current dimension gets
routed first.

� For hypercubes, this results in bit-fixing paths.
� A packet doesn’t have to wait until routing of all packets in dimension i (globally)
finishes before it advances to get routed in dimension i + 1. Since each dimension
concerns different edges, we can execute the protocol on a per-dimension basis, even if
a single node routes packets along several dimensions in parallel.

[Pic: Example Grid, Hypercube]

Dimension-by-dimension routing is a simple and decentralized procedure for solving both
path selection (repeatedly route along path of dimension i to target submesh, for i =
0, 1, 2, . . .) and packet scheduling (farthest first) problems. It works well, however, only
for small-dimensional meshes.

Lemma 48. For every permutation routing problem on meshes M(ℓ, 1) and M(ℓ, 2), dimension-
by-dimension routing terminates in O(Diam(G)) rounds. For mesh M(ℓ, 3) there are per-
mutations such that dimension-by-dimension routing takes Ω(Diam(G)2) rounds.

Proof. Exercise.

Centralized routing algorithms can be much faster. The following result relies on fundamental
insights on mesh networks, sorting and matching to choose appropriate routing paths.

Theorem 22. For any permutation routing problem on M(ℓ, d) there are centralized al-
gorithms to solve path selection and packet scheduling such that the routing terminates in
O(ℓ · d) = O(Diam(G)) rounds.

8.1 Deterministic Oblivious Routing

Oblivious Routing:
� Routing with local control
� Path chosen for each packet depends only on its own source and target
� Does not depend on sources or destinations of other packets
� Specify a path systemW that contains a path Pu,v from u to v, for every pair u, v ∈ V .
� Every packet with source u and target v is sent along the path Pu,v

� Example: Dimension-by-dimension routing and bit-fixing paths – every routing path
is entirely determined by IDs of source and target

Here paths given by W must be used for every permutation routing problem on the
network – impossible to adjust paths based on the permutation (as in Theorem 22).

8.1. DETERMINISTIC OBLIVIOUS ROUTING 61

Theorem 23. Let G = (V,E) be any connected graph, ∆ the maximum degree of any node
in G, and W be any path system. Then there exists a permutation π and an edge e∗ ∈ E
such that at least √

n

2(∆2)
= Ω

(√
n

∆

)
of the paths selected by π from W contain e∗.

Very bad news about deterministic oblivious routing: For graphs with small degree,
time is polynomial in n. Even a small diameter, say, logarithmic in n does not help.

Example d-dimensional Hypercube M(2, d):
Theorem 22: Non-oblivious deterministic routing in O(Diam(G)) = O(d) = O(log n)
Theorem 23: Deterministic oblivious routing needs Ω(

√
n/∆) = Ω(2d/2/d) = Ω(

√
n/ log n)

Proof of Theorem 23. Notation/Definition:
� For v ∈ V , let Wv = {Pv,u | u ∈ V } the set of all paths starting in v
� Consider t > 0, node v ∈ V and edge e ∈ E. We say e is t-popular for v if at least t
paths from Wv contain e.

Three Proof Steps:
1. Lemma 49: For any v ∈ V , there are “many” edges that are “quite popular” for v.
2. Using Lemma 49: There is e∗ ∈ E “quite popular” for many nodes, i.e., e∗ is t-popular

for t different nodes, with t = Ω(
√
n/∆).

3. Given this, construct permutation π such that t of paths selected by π contain e∗.

Step 1:
For t > 0, define a 0-1-matrix A(t) with n rows and |E| columns. For v ∈ V and e ∈ E:

Av,e(t) =

{
1 if e is t-popular for v, and

0 otherwise.

� For v ∈ V we denote the row sum of v by

Av(t) =
∑
e∈E

Av,e(t)

� For e ∈ E we denote the column sum of e by

Ae(t) =
∑
v∈V

Av,e(t)

Lemma 49. For all v ∈ V and t ≤ (n− 1)/∆ we have Av(t) ≥ n
2∆t

Proof of Lemma: Consider nodes connected to v by “popular paths”:
� Q ⊆ V is the set of nodes to which there is a path from v that contains only edges
that are t-popular for v.

� L = V −Q and B = E ∩ (L×Q)

62 CHAPTER 8. PACKET ROUTING

� B are edges connecting a node in Q (to which a path of t-popular edges exists) to a
node in L.

[Pic: Schema Q, L and B]

Note that
|L| ≤ (t− 1) · |B|: For each node u ∈ L, the path Pu,v leads through at least one edge in B.

These edges are not t-popular, each of them contained in at most t−1 paths fromWv.
|B| ≤ ∆|Q|: Each node in Q has at most ∆ incident edges

Combining this gives ∆|Q|(t− 1) ≥ |L| = n− |Q|, which implies ∆|Q|t ≥ n and, thus,

|Q| ≥ n

∆t

If |Q| ≤ 2Av(t), the lemma is proved, because

Av(t) ≥
|Q|
2
≥ n

2∆t
.

Let E ′ be all t-popular edges for v. We will show |Q| ≤ 2|E ′| = 2Av(t).

Observe that the lemma requires t ≤ (n− 1)/∆. Then E ′ ̸= ∅.
� v has at most ∆ incident edges, Wv contains n− 1 paths.
� At least one of the incident edges must be used by at least (n− 1)/∆ paths from Wv

� Hence, if t is so small, then there would be at least one t-popular edge.
There is at least one t-popular edge. Each node in Q is incident to an edge in E ′. Every
edge in E ′ is incident to at most two nodes from Q. Hence, |Q| ≤ 2|E ′| = 2Av(t). This
proves the lemma.

Step 2:
Now show that there is e∗ that is t-popular for t nodes, with t = Ω(

√
n/∆). Observe that∑

e∈E

Ae(t) =
∑
e∈E

∑
v∈V

Av,e(t) =
∑
v∈V

∑
e∈E

Av,e(t) =
∑
v∈V

Av(t) ≥
n2

2∆t

The last step is due to Lemma 49. Pigeonhole principle implies there is e∗ ∈ E with

Ae∗(t) ≥
⌈

n2

|E| · 2∆t

⌉
≥
⌈ n

2∆2t

⌉
.

The last step uses |E| ≤ ∆n.

Choose t = n
2∆2t

, i.e., t =
√
n/(
√
2∆). For any n ≥ 2, we have t ≤ (n− 1)/∆, so Lemma 49

can be applied. Plugging in t into the above inequality, we see

Ae∗(t) ≥
⌈

n

2∆2
√
n/(
√
2∆)

⌉
=

⌈ √
n√
2∆

⌉
= ⌈t⌉.

e∗ is ⌈t⌉-popular for ⌈t⌉ nodes, where t =
√
n/(
√
2∆).

Step 3:
Construct bad permutation π such that ⌈t⌉ paths selected by π contain e∗:

8.2. RANDOMIZED OBLIVIOUS ROUTING 63

� V ′ denotes set of ⌈t⌉ nodes for which e∗ is ⌈t⌉-popular, wlog V ′ = {1, . . . , ⌈t⌉}
� For every v ∈ V ′, there is subset Uv ⊆ V with |Uv| = ⌈t⌉ such that, for every u ∈ Uv

the path Pv,u contains e∗

� For v = 1 to ⌈t⌉ set π(v) = u with u chosen arbitrarily from Uv \ {π(1), . . . , π(v − 1)}
� For v = ⌈t⌉ to n set π(v) = u with u chosen arbitrarily from V \ {π(1), . . . , π(v − 1)}

By construction, π and e∗ satisfy properties postulated in the theorem.

8.2 Randomized Oblivious Routing

How to improve upon this? Randomized Oblivious Routing!
For every pair u, v ∈ V of nodes:

� Path system W contains set Wu,v of paths from u to v
� Probability distribution Du,v :Wu,v → [0, 1]

For every packet to be routed from u to v choose the routing path Pu,v fromWu,v by drawing
independently at random from Du,v.

Example: For every pair of nodes there are two possible paths, i.e., |Wu,v| = 2 for all
u, v ∈ V . Consider uniform distributions Du,v. When sending a packet from u to v, each of
the two possible paths is chosen with probability Du,v(P) = 1/2.

We will design path selection algorithms and packet scheduling policies.
Simple Examples for scheduling policies:

� FCFS (first-come-first-serve)
� FTG (farthest-to-go)
� Random Rank (defined later)

Greedy (no-wait) policies: Packet p waits at round t before using next edge e on its path
only because other packet p′ is using e in round t. Then we say p is delayed by p′ at e in
round t.

Two important parameters for a collection of paths P :
Dilation D of P is length (number of edges) on the longest path in P .
Congestion C of P is maximum number of paths of P sharing the same edge (in the same

direction).

For simplicity: Replace every undirected edge by two directed edges in opposite direction.
For (directed) edge e let C(e) be number of paths from P using e. Then C = maxe∈E C(e).

Initial Observations:
Lower Bound: Every scheduling policy needs at least max{C,D} = Ω(C +D) steps.

� There is a packet with path length D, needs at least D rounds to target
� There is an edge that needs to forward at least C packets, requires at least C rounds.

Upper Bound: Every greedy scheduling policy needs at most C ·D steps.

� Each packet can be delayed for at most C − 1 rounds on each edge of the path.

64 CHAPTER 8. PACKET ROUTING

8.2.1 Path Selection for the Hypercube

First we study permutation routing on M(2,d), i.e., the d-dimensional hypercube.

Path Selection with Valiant’s Trick:
� For each packet p, pick an intermediate target node vp independently uniformly at
random from V .

� Route p from source sp to intermediate target vp via bit-fixing paths
� Route p from intermediate target vp to target tp via bit-fixing paths

Observe: Path selection according to the paradigm of randomized oblivious routing.

Simplify the analysis by analyzing two-step process:
Phase 1 : All packets routed from sources to intermediate targets
Phase 2 : All packets routed from intermediate targets to targets

Transforms “worst-case permutation routing problem” into two “random routing problems”:
Phase 1 : Random destination nodes
Phase 2 : Random source nodes

We analyze Phase 1, same analysis can be done for Phase 2.

Lemma 50. The congestion C in Phase 1 (Phase 2) is O(log n/ log log n) whp.

Proof. Consider e, an edge of dimension i, i.e., e flips i-th bit (i = 0, . . . , d− 1)
� IN(e): set of nodes from which e is reachable by a bit-fixing path.
� OUT (e): set of nodes that are reachable from e by a bit-fixing path.
� Sizes: |IN(e)| = 2i and |OUT (e)| = 2d−i−1.
� Fix any node in v ∈ IN(e).
� Path of packet starting at v contains e in Phase 1 ⇔ intermediate target in OUT (e).
� Since they are chosen uniformly at random

Pr[v’s packet traverses e] =
|OUT (e)|

n
=

2d−i−1

2d
= 2−i−1 .

[Pic: Example Bit-Fixing Paths arriving at edge e]

Consider any subset X ⊆ IN(e).
� A(X, e) denotes event that paths of all packets starting from X contain e
� C(e) random variable, congestion at edge e (i.e., number of paths containing e)
� Let k ∈ N0, then

Pr[C(e) ≥ k] = Pr[∃X ⊆ IN(e), |X| = k : A(X, e)]

≤
Union Bound

∑
X⊆IN(e),|X|=k

Pr[A(X, e)]

=
∑

X⊆IN(e),|X|=k

(2−i−1)k

=

(
|IN(e)|

k

)
· (2−i−1)k

8.2. RANDOMIZED OBLIVIOUS ROUTING 65

Estimation of binomial coefficients using e = 2.71 . . . the Eulerian number:(a
b

)b
≤

(
a

b

)
≤

(e · a
b

)b
This implies

Pr[C(e) ≥ k] ≤
(
|IN(e)|

k

)
· (2−i−1)k ≤

(
e · 2i

k

)k

· (2−i−1)k =
(e

2k

)k
.

Congestion C = max{C(e) | e ∈ E}, so

Pr[C ≥ k] = Pr[∃e ∈ E : C(e) ≥ k] ≤
Union Bound

∑
e∈E

Pr[C(e) ≥ k]

≤ |E| ·
(e

2k

)k
≤ n2

(
1

2

)k

.

The last step uses |E| ≤ dn ≤ n(n− 1) and e
2k
≤ 1

2
, where we assume k ≥ 3.

Now choose k large enough such that Pr[C ≥ k] ≤ n−α for constant α > 0. In particular,
with k = ⌈(α + 2) log n⌉ ≥ 3 we get

Pr[C ≥ k] ≤ n2 · 2−(α+2) logn ≤ n2n−(α+2) = n−α.

This shows C = O(log n) whp.
For C = O(log n/ log log n) choose k more clever. With

k = max

{
e

2

√
d, 2(α + 2) · d

log d

}
= O

(
log n

log log n

)
we get

Pr[C ≥ k] ≤ n2 ·
(e

2k

)k
≤ n2 ·

(
1√
d

)k

≤ n2

((
1√
d

) 2
log d

)(α+2)d

≤ n2

(
1

2

)(α+2)d

= n2n−(α+2) = n−α.

This shows that Valiant’s trick gives low congestion for permutation routing problems.

More general routing: h-relation. Every node is source of at most h packets and target of
at most h packets. Permutation routing is a 1-relation.

Lemma 51. Using Valiant’s Trick for routing an arbitrary h-relation on the hypercube, the
congestion is C = O(log n+ h) whp.

Proof. Exercise.

66 CHAPTER 8. PACKET ROUTING

Algorithm 15: RandomRank Protocol

1 R← sufficiently large integer value (speficied below)
2 r(p)← rank of packet p, assigned indep. uniformly at random from {1, 2, . . . , R}
3 repeat
4 In every round, each node forwards as many packets along their paths as possible
5 if two or more packets want to enter edge e in round t then
6 if two or more of these packets have smallest rank then
7 packet with smallest ID among the ones with smallest rank enters e

8 else
9 packet with smallest rank enters e

10 Remaining packets wait until next round

11 until until all packets reach target

8.2.2 Packet Scheduling for the Hypercube

Using Valiant’s trick, we can do good path selection on the hypercube. How to solve the
packet scheduling problem?

Theorem 24. Suppose we are given a set of packets and a set P of bit-fixing paths, one for
each packet. Let C denote the congestion of P. The RandomRank Protocol is a distributed,
randomized scheduling policy that delivers all packets in time O(C + log n) whp.

Together with Valiant’s Trick, this shows

Corollary 12. There is a distributed algorithm that routes any h-relation on the hypercube
in time O(h+ log n) whp.

The proof of Theorem 24 uses a “witness structure”.

A delay sequence (DS) of length s consists of
� a delay path P = (e(1), . . . , e(L)), 1 ≤ L ≤ d with edges of decreasing dimension
(like a bit-fixing path in reverse order)

� s numbers ℓ1, . . . , ℓs ∈ {1, . . . , L} with ℓ1 ≤ ℓ2 ≤ · · · ≤ ℓs
� s + 1 distinct delay packets p0, p1, . . . , ps such that, for 1 ≤ i ≤ s, edge e(ℓi) is
contained in the paths of packets pi−1 and packet pi

� s+ 1 numbers k0, k1, . . . , ks ∈ [R] with k0 ≥ k1 ≥ · · · ≥ ks.

� A DS is active if r(pi) = ki for 0 ≤ i ≤ s.

We first show that a long execution of RandomRank gives rise to a long active DS.

Lemma 52. If RandomRank needs T > d steps, then there exists an active DS of length at
least T − d.

Proof. We construct a path by travelling backwards through time:
� Consider a packet p0 arriving in round T > d. p0 must have been delayed.

8.2. RANDOMIZED OBLIVIOUS ROUTING 67

� Follow path of p0 backwards through time to first edge e, where p0 was delayed. Here
a packet p1 delays p0.

� Follow path of p1 to an edge (possibly still e) where p1 was delayed. Here a packet p2
delays p1.

� Repeat. Finally, we reach packet ps that was not delayed before. Follow ps to source.
� Tour backward through time covers T steps. We saw s time steps where a packet got
delayed. Let L be the number of edges on the recorded path.

� Every step: One more edge or observed delay. Thus T = L+ s and s = T −L ≥ T −d.

Based on this path computed via reverse time-travel, we can now construct an active DS:
1. The sequence of edges we have recorded gives us the delay path P = (e(1), . . . , e(L)).

Since we follow bit-fixing paths backwards in time, our sequence of edges (i.e., the
reverse path) traverses edges in decreasing order of dimension.

2. Packets p0, . . . , ps are the delay packets. By construction, they are distinct (Why?)
3. For 1 ≤ i ≤ s, we choose ℓi ∈ {1, . . . , L} so that e(ℓi) is the edge on which pi−1 was

delayed by pi
4. Observe that both the paths of pi−1 and pi traverse e(ℓi), and ℓ1 ≤ ℓ2 ≤ · · · ≤ ℓs.
5. For 0 ≤ i ≤ s, we set ki = r(pi). Observe this yields k0 ≥ k1 ≥ · · · ≥ ks as packet pi−1

is delayed by packet pi, and RandomRank prefers packets with small rank.

Let’s get some more insights on active DS. We first count the number of active DS of some
maximum length s.

Lemma 53. The number of delay sequences of length at most s is at most

n2 ·
(
d− 1 + s

s

)
·
(
R + s

s+ 1

)
· Cs+1 .

Proof. Step 1: Counting delay paths.

Delay path moves monotonically through dimension, i.e., corresponds to a bit-fixing path
(in reverse order). Number of paths determined by number of distinct source/target nodes,
at most n(n− 1) ≤ n2 paths.

Step 2: Counting the ways to choose ℓi’s and ki’s.

Bound the number to choose integers ℓ1, . . . , ℓs such that ℓ1 ≤ ℓ2 ≤ . . . ≤ ℓs ≤ d.
� Encode integers as binary strings:

0ℓ1−110ℓ2−ℓ110ℓ3−ℓ21 . . . 10ℓs−ℓs−110d−ℓs .

� String contains s ones. Number of zeros is

ℓ1 − 1 +

(
2∑

i=2

(ℓi − ℓi−1)

)
+ d− ℓs = d− 1 .

68 CHAPTER 8. PACKET ROUTING

� One-to-one mapping between ℓi’s and binary strings with d − 1 zeros and s ones.
Number of such strings is (

d− 1 + s

s

)
� Similarly: Number of ways to choose k0, . . . , ks ∈ [R] such that k0 ≥ k1 ≥ . . . ≥ ks
given by number of binary strings with R− 1 zeros and s+ 1 ones:(

R + s

s+ 1

)

Step 3: Counting the ways to choose delay packets.

Suppose delay path P and ℓi’s are fixed.
� For each delay packet, we know an edge that is contained in its path: pi uses edge e(ℓi)
(for 1 ≤ i ≤ s) and p0 uses edge e(ℓ1).

� Each edge contained in at most C paths of packets
� At most C possibilities to choose a packet pi that goes through a given edge.
� At most Cs+1 possibilities to choose all delay packets p0, . . . , ps.

In addition to counting, we also see that a long DS is quite unlikely to be active.

Lemma 54. The probability that a given DS of length s is active is (1/R)s+1.

Proof. For every delay packet: Probability of rank ki is 1/R, since ranks chosen uniformly at
random from [R]. Hence, probability all s+1 delay packets have prescribed rank is 1/Rs+1,
since ranks are chosen independently.

Finally, we compose the three lemmas to prove Theorem 24.

Proof of Theorem 24. Lemma 52 shows: Algorithm needs T = d + s steps ⇒ exists active
DS with length at least s. Cut the sequence after packet ps. This gives active DS of length
exactly s.

DS(s) is set of all possible delay sequences of length s.

Pr[T ≥ d+ s] ≤ Pr[∃DS ∈ DS(s) : DS is active]

≤
∑

DS∈DS(s)

Pr[DS is active]

=
Lemma 54

∑
DS∈DS(s)

1

Rs+1

≤
Lemma 53

n2 ·
(
d− 1 + s

s

)
·
(
R + s

s+ 1

)
·
(
C

R

)s+1

8.2. RANDOMIZED OBLIVIOUS ROUTING 69

Now use
(
a
b

)
≤ 2a and

(
a
b

)
≤
(
ea
b

)b
and derive

Pr[T ≥ d+ s] ≤ n2 · 2d−1+s ·
(
e(R + s)

s+ 1

)s+1

·
(
C

R

)s+1

≤ n3 ·
(
2eC(R + s)

(s+ 1)R

)s+1

.

Choosing R ≥ s yields R + s ≤ 2R and, thus,

Pr[T ≥ d+ s] ≤ n3 ·
(

4eC

s+ 1

)s+1

.

Now choose s = ⌈max{8eC, (α + 3) log n}⌉ − 1 = O(C + log n). This gives

Pr[T ≥ d+ s] ≤ n3 ·
(
1

2

)s+1

≤ n3 ·
(
1

2

)(α+3) logn

≤ n−α .

With probability at least 1− n−α, RandomRank delivers all packets in at most d+ s− 1 =
O(C + log n) rounds.

8.2.3 Packet Routing in General Networks

We route packets in arbitrary networks G = (V,E).
Path Selection: Every packet p routed along a shortest sp-tp-path.
Packet Scheduling: GrowingRank (same as RandomRank, differs only in Lines 1 and 11)

Algorithm 16: GrowingRank Protocol

1 R← sufficiently large integer, being a multiple of D (dilation of chosen paths P)
2 r(p)← rank of packet p, assigned indep. uniformly at random from {1, 2, . . . , R}
3 repeat
4 In every round, each node forwards as many packets along their paths as possible
5 if two or more packets want to enter edge e in round t then
6 if two or more of these packets have smallest rank then
7 packet with smallest ID among the ones with smallest rank enters e

8 else
9 packet with smallest rank enters e

10 Remaining packets wait until next round

11 Every packet that moves over some edge increases its rank by R/D

12 until until all packets reach target

Theorem 25. Suppose we are given a set of N ≥ n packets, and for each packet p a
shortest sp-tp path in P. Let C and D denote the congestion and dilation of P, resp. The
GrowingRank Protocol is a distributed, randomized scheduling policy that delivers all packets
in time O(C +D + logN) whp.

70 CHAPTER 8. PACKET ROUTING

Observation/Notation:
� Initial rank at most R, at most D times forwarded, each time rank grows by R/D
� Final rank at most 2R
� re(p) ∈ [2R]: rank of packet p in time steps, where p contends for being forwarded
along edge e

Adapted definition of delay sequence. A delay sequence (DS) of length s consists of
� a delay path P = (e(1), . . . , e(L)), for 1 ≤ L ≤ 2D, where P is a path in G
� s numbers ℓ1, . . . , ℓs ∈ {1, . . . , L} with ℓ1 ≤ ℓ2 ≤ · · · ≤ ℓs
� s + 1 distinct delay packets p0, p1, . . . , ps such that, for 1 ≤ i ≤ s, edge e(ℓi) is
contained in the paths of packets pi−1 and packet pi

� s+ 1 numbers k0, k1, . . . , ks ∈ [2R] with k0 ≥ k1 ≥ · · · ≥ ks.

� A DS is active if re(ℓi)(pi) = ki for 0 ≤ i ≤ s and re(ℓ1)(p0) = k0.

We conduct similar analysis steps as for the RandomRank Protocol.

Lemma 55. If GrowingRank needs T ≥ 2D steps, then there exists a DS of length at least
T − 2D.

Proof. The proof is quite similar to the proof of Lemma 52 We again construct the path by
travelling backwards through time:

� Consider a packet p0 arriving in round T > D. p0 must have been delayed.
� Follow path of p0 backwards through time to first edge e, where p0 was delayed. Here
a packet p1 delays p0.

� Follow path of p1 to an edge (possibly still e) where p1 was delayed. Here a packet p2
delays p1.

� Repeat. Finally, we reach packet ps that was not delayed before. Follow ps to source.
� Tour backward through time covers T steps. We saw s time steps where a packet got
delayed. Let L be the number of edges on the recorded path.

Based on this path computed via reverse time-travel, construct active DS:
1. Path we have recorded in reverse order is delay path P = (e(1), . . . , e(L)).
2. Packets p0, . . . , ps are delay packets.
3. For 1 ≤ i ≤ s, we choose ℓi ∈ {1, . . . , L} so that e(ℓi) is the edge on which pi−1 was

delayed by pi
4. For 1 ≤ i ≤ s, set ki = re(ℓi)(pi) and k0 = re(ℓ1)(p0).

Exercise: Show that packets p0, . . . , ps are distinct, i.e., no packet appears more than once
in the delay sequence. This is the only part of the analysis where we need to assume that
paths of packets are shortest paths in G.

Observe k0 ≥ k1 ≥ · · · ≥ ks as ranks of delay packets non-increasing on our tour:
� Switch from pi to pi+1 on the tour, then rank of pi+1 is not larger than rank of pi
(protocol prefers packets with smaller rank)

� Add edge to delay path and follow this edge, then rank of currently observed packet
is decreased (by R/D) since we proceed backwards in time.

8.2. RANDOMIZED OBLIVIOUS ROUTING 71

Remains to show: L ≤ 2D and s ≥ T − 2D
� Final rank of p0 is at most 2R
� During travel backward in time, observed ranks non-increasing
� Add edge to delay path: Rank of current packet that we follow decreases by R/D
� Rank of ps at source at most 2R− L · (R/D).
� Ranks non-negative: 2R− LR/D ≥ 0, so L ≤ 2R/(R/D) = 2D.
� T = L+ s ⇒ s = T − L ≥ T − 2D.

The next step is again to count the number of DS of a given length.

Lemma 56. The number of delay sequences of length s is at most(
2D − 1 + s

s

)
·
(
2R + s

s+ 1

)
·NCs .

Proof. Similar to the analysis of Lemma 53 above, the number of ways to choose ℓi’s and
ki’s can be bounded by (

2D − 1 + s

s

)
·
(
2R + s

s+ 1

)
.

Given ℓi’s, count number of choices for delay packets and edges on delay path.
� N possibilities to choose packet p0
� When p0 fixed, start construction of delay path from e(1) to e(ℓ1) backwards from tp0
� Path of p1 contains e(ℓ1), so at most C possibilities to choose p1
� When p1 fixed, construct delay path up to e(ℓ2)
� Path of p2 contains e(ℓ2), so at most C possibilities to choose p2
� And so on. Number of possibilities to choose delay packets and path: At most NCs.

The last lemma again bounds the probability that a DS of a given length is active.

Lemma 57. The probability that a DS of length s is active is at most (1/R)s+1

Proof. Let e(ℓi) be the j-th edge on the path of packet pi. Suppose rank of pi at e(ℓi) is
ki = k′

i + (j − 1) ·R/D. This happens with probability 1/R (if and only if initial rank is k′
i).

Hence, probability that rank of pi at e(ℓi) is ki is at most 1/R. Thus, probability that all
s+ 1 delay packets have the given ranks ki is at most (1/R)s+1.

Proof of Theorem 25. We assemble the insights from the lemmas as before.

Pr[T ≥ 2D + s] ≤ Pr[∃DS ∈ DS(s) : DS is active]

≤
∑

DS∈DS(s)

Pr[DS is active]

≤
(
2D − 1 + s

s

)(
2R + s

s+ 1

)
NCsR−(s+1)

≤ 22D−1+s

(
e(2R + s)

s+ 1

)s+1

NCsR−(s+1)

72 CHAPTER 8. PACKET ROUTING

≤ 22D
(

6Ce

s+ 1

)s+1

N

The last step assumes R ≥ s.

Finally, let s = ⌈max{12eC, (α + 1) logN + 2D}⌉ = O(C +D + logN). This gives

Pr[T ≥ 2D + s] ≤ 22DN

(
1

2

)s+1

≤ 22DN

(
1

2

)(α+1) logN+2D

≤ N−α ≤ n−α

using n ≤ N . Thus, with probability at least 1 − n−α, GrowingRank needs at most 2D +
s− 1 = O(C +D + logN) rounds.

Chapter 9

Rumor Spreading

Simple protocols to broadcast a message/update/virus/rumor/etc. in a network.
Motivated, for instance, by

Lazy Updates in Distributed Databases: Dataset is mirrored at several locations in
the network. Suppose an update happens at one node. How to spread the updates
through the network with low message complexity?

Epidemics and Infection Processes: Message interpreted as a virus that spreads like an
epidemic though a network. Model and understand (randomized) infection process and
the resulting properties of the spreading

Rumor Spreading: Piece of news that spreads though an online social network. How long
does it take to reach everyone?

Several protocols studied in the literature. Initially, a single node v0 in G has a message.
In each round, ...

Push Protocol: ...every informed node that holds the message sends it to a neighbor chosen
uniformly at random.

Pull Protocol: ...every uninformed node that has no message asks a neighbor chosen uni-
formly at random whether there are some news.

Push-Pull Protocol: ...every informed node applies Push; every uninformed node applies
Pull.

We concentrate on the Push protocol. In each round, every informed node makes a random
phone call to a neighbor to tell her the message.

How to measure the spreading time in a graph with n nodes?

1. Consider for each integer T the probability that after T rounds all nodes are
informed. Here we assume a worst-case starting node v0. We usually give a bound on
T as a function of n so that Pr[all informed at time T] = 1 − o(1) (with asymptotics
in n).

2. Consider the round Tall at which the last node gets informed. We sometimes consider
bounds on the expected time to inform all nodes E[Tall]. Again, we assume a
worst-case starting node.

73

74 CHAPTER 9. RUMOR SPREADING

9.1 Stars and Cliques

Theorem 26. For the n-node star graph, the expected number of rounds to inform all nodes
is E[Tall] = Ω(n log n). For the n-node complete graph, all nodes are informed after T =
O(log n) rounds with probability 1− o(1).

Proof. Star Graph: Exercise.

Complete Graph:
Completely symmetric, cluster time into phases based on the number of informed nodes:
Phase 1: 0 to x1 = n0.4 informed nodes. True doubling: Whp all calls reach an uninformed

node. Number of informed nodes doubles in each round (→ Birthday Paradox)
Phase 2: x1 to x2 = n/(log log n)2 informed nodes. Exponential growth: Each call still has

probability 1 − o(1) to reach an informed node. Number of informed nodes almost
doubles, increases by factor 2− o(1) each round

Phase 3: x2 to x3 = n · (1− 1/(log log n)2) informed nodes. Short intermediate phase.
Phase 4: x3 to n informed nodes. Exponential shrinking of uninformed nodes by factor

e− o(1) each round (→ Coupon Collection)

Assumption: Nodes call random neighbor including themselves.
Slows down process, adds symmetry, eases writing (1/n instead of 1/(n− 1))

Phase 1: Exact doubling
� Consider the first x1 calls. During each such call, at most x1 informed nodes.
� Pr[call reaches informed node] ≤ x1/n
� Union Bound: Pr[∃ call that reaches informed node] ≤ x1 · x1/n = 1/n0.2 = o(1).
� With probability 1− 1/n0.2, the first x1 = n0.4 calls all reach uninformed nodes.
� Every call informs a new node ⇒ Number of informed nodes doubles in every round.
� Let x1 = 2T1 − 1, then T1 = log2(n

0.4 + 1) = (0.4 + o(1)) log n
With probability 1− o(1), Phase 1 takes T1 = (0.4 + o(1)) log n rounds.

Phase 4: Exponential shrinking of uninformed nodes
� For each round, at least x3 = n− o(n) informed nodes, so at least x3 calls
� Consider fixed uninformed node v.

Pr[v still uninformed after T4 rounds in Phase 4] ≤
(
1− 1

n

)x3T4

≤ e−x3T4/n ≤ 1

n

for T4 = (n/x3) lnn = (1 + o(1)) lnn.
� Note: 1 + x ≤ ex for all x ∈ R.
� Union Bound: Pr[∃ uninformed node after T rounds] ≤ (n−x3) ·1/n = n/(log log n)2) ·
1/n = o(1)

With probability 1− o(1), Phase 4 takes T4 = (1 + o(1)) lnn rounds.

Phase 3: Short intermediate phase
� For each round, at least x2 = n · f informed nodes, where f = o(1).

9.1. STARS AND CLIQUES 75

� Consider T3 = 1/(f · g) rounds, where g = o(1). Consider fixed uninformed node v.

Pr[v still uninformed after T3 rounds in Phase 3] ≤
(
1− 1

n

)x2T3

≤ e−x2T3/n = e−1/g

� Expected number of uninformed nodes after T3 rounds at most n · e−1/g

� Markov inequality:
Pr[more than ng uninformed nodes after T3 rounds] ≤ ne−1/g/ng = 1/g

e1/g
= o(1).

� Note that f and g depend on choice of x2 and x3. We choose f = g = 1/(log log n)2.
� Hence, x2 = n/(log log n)2 and x3 = n− n/(log log n)2

With probability 1− o(1), Phase 3 takes T3 = (log log n)4 rounds.

Phase 2: How long does it take from x1 = n0.4 to x2 = n/(log log n)2 informed nodes?
Number of informed nodes ”almost” doubles in each round. Reasons for inexact doubling:
Call goes to an already informed node, two nodes call the same informed node.

� Consider single round in Phase 2. Suppose there are i informed nodes.
� Order the i informed nodes and assume they make their calls sequentially
� Indicator variable:

Xk =

{
1 kth node calls uninformed node

0 otherwise

� At the end of round i, number of newly informed nodes is X =
∑i

k=1Xk

� Since Xk are indicator variables

E[X] =
i∑

k=1

E[Xk] =
i∑

k=1

Pr[Xk = 1] ≥
i∑

k=1

n− i− (k − 1)

n
≥ i

(
1− 3i

2n

)
Single round with i informed nodes ends with expected number of at least i

(
2− 3i

2n

)
nodes.

Thought experiment: An ”ideal” Phase 2.
Every round always ends having exactly the expected number of informed nodes.

� Ideal Phase 2a: From n0.4 to n/(log n)2 informed nodes

� Each round, number of informed nodes grows by factor at least 2
(
1− 3

4(logn)2

)
� Consider T21 =

4
3
· log(n/x1) rounds. Then number of informed nodes grows to

i

(
2

(
1− 3

4(log n)2

))T1

≥ n

(
1− 3T1

4(log n)2

)
≥ n/(log n)2

where we use the Bernoulli inequality: (1− x)t ≥ 1− xt
� Ideal Phase 2b: From n/(log n)2 to n/(log log n)2 informed nodes
� Similar argument as above replacing (roughly) all log n by log log n
� T22 = 2 log log n rounds do the job.

The ideal Phase 2 needs 4
3
· log n0.6 + 2 log log n rounds.

Consider the changes to this ideal process. The probability that a change happens in any
one of the rounds is small. We apply the following standard concentration result.

76 CHAPTER 9. RUMOR SPREADING

Theorem 27 (Azuma, McDiarmid, Hoeffding,...). Let X1, . . . , Xm be independent random
variables taking values in some sets A1, . . . , Am. Let f : A1 × · · · × Am → R with |f(a) −
f(b)| ≤ cj whenever a and b differ only in the jth component. Then

� Pr[f(X1, . . . , Xm) ≤ E[f(X1, . . . , Xm)]− λ] ≤ exp(−2λ2/
∑m

j=1 c
2
j)

� Pr[f(X1, . . . , Xm) ≤ E[f(X1, . . . , Xm)] + λ] ≤ exp(−2λ2/
∑m

j=1 c
2
j)

Use this theorem as follows:
� Independent random variables: Our indicator variables Xk for successful calls
� Sets Ak = {0, 1}.
� f =

∑i
k=1Xk is the number of newly informed nodes after the round.

� Clearly, f differs by at most ck = 1 when result of call Xj changes
� Apply theorem with m = i, all ck = 1:

Pr[X ≤ E[X]− i0.75] ≤ e−2
√
i

Now apply concentration to see that it’s very unlikely to take much longer than the ideal
process. We only sketch the proof:

� Using i ≤ n/(log log n)2 we have for n ≥ 22
3
that 3i/2n ≤ 1/2 and E[X] ≥ i/2.

� Then,

Pr[X ≤ E[X](1− 2i0.25)] ≤ Pr[X ≤ E[X]− i0.75] ≤ e−2
√
i ≤ e−2n0.2

where we use i ≥ n0.4 in the end
� Union Bound: With probability 1 − o(1) we have X ≥ E[X](1 − 2i0.25) in all of the
2 log n rounds starting with at most n/(log log n)2 informed nodes.

� With probability 1− o(1) we have the good case, in which the ideal phase 2 applies –
only progress dimished by a factor 1− 2i0.25 in every round.

� When the phase runs for a logarithmic number of rounds, total progress in informed
nodes dimished to a factor of (1− 2n−0.1)Θ(logn) ≥ 1− o(1).

� Hence, we need to run the process a bit longer the overcome this loss in progress. The
mulitplicative growth in one additional round, however, directly recovers this small
multiplicative loss.

With probability 1− o(1), Phase 2 takes at most 4
3
· log n0.6 + 2 log log n+ 1 rounds.

9.2 General Graph Topologies

Let’s consider more general network topologies. The complete graph and star graph are
indeed the extreme network topologies for the Push protocol.

Theorem 28. Let T be the smallest integer such that in round T of the Push protocol with
probability 1− 1/n the entire set of nodes is informed. For every connected graph G it holds
T = O(n log n) and T = Ω(log n).

Proof. Upper Bound:
Consider a shortest path P = (v0, v1, . . . , vk) to some node vk.

9.2. GENERAL GRAPH TOPOLOGIES 77

� Each round: Probability that vi informs vi+1 is 1/ deg(vi).
� Expected number of rounds until vi informs vi+1 at most deg(vi)
� Expected number of rounds until vk gets informed at most

∑k−1
i=0 deg(vi)

� w ̸∈ P connected to at most three nodes vi, vi+1 and vi+2 (since P shortest path).
� Thus,

∑k−1
i=0 deg(vi) ≤ 3n.

� For each node u ∈ G, expected time until u informed is at most 3n.
� Markov inequality: Pr[u uninformed after 6n rounds] ≤ 1/2.

[Pic: Path]

We say phase 1 are rounds 1, . . . , 6n. If u remains uninformed after phase 1, overestimate
the time by assuming that the whole process starts at v0 again.

� Phase 2 is rounds 6n+ 1, . . . , 12n. We assume rumor again starts at v0.
� Same analysis as above:
Pr[u uninformed after 12n rounds | u uninformed at the end of round 6n] ≤ 1/2.

� Thus, Pr[u uninformed after 12n rounds] ≤ 1/4.
� Repeat. Pr[u uninformed after i · 6n rounds] ≤ 1/2i.
� With i = 2 log n: Pr[u uninformed after 12n log n rounds] ≤ 1/n2

� Union bound: Pr[∃u uninformed after 12n log n rounds] ≤ 1/n
Hence, after T = 12n log n nodes, all nodes are informed with probability at least 1− 1/n.

Lower Bound: Exercise.

More generally: Same approach shows bounds wrt. maximum degree ∆ and diameterDiam(G).

Lemma 58. Let P = (v0, v1, . . . , vk) be any path of length k in G and ∆ = maxi=0,1,...,k deg(vi)
be the maximum degree of vertices in P . For any k′ ≥ k, after 2k′∆ rounds the whole path
is informed with probability at least 1− e−k′/4.

Proof. Consider modified process:
Every round, each informed node vi calls vi+1 with probability exactly 1/∆.

� Modified process obviously slower to inform vk than real process
� i(t) is largest index j such that v0, . . . , vj are informed at start of round t
� Define random variable Xt in round t:
If i(t) < k and vi(t)+1 becomes informed in round t, then set Xt = 1.
If i(t) = k (i.e. all nodes informed), then set Xt = 1 with probability 1/∆, indepen-
dently from all other random decisions.
In all other cases, set Xt = 0.

� All Xt are independent and satisfy Pr[Xt = 1] = 1/∆.
� Consider X =

∑T
t=1Xt. Observe: vk informed after T rounds ⇔ X ≥ k

� Note E[X] = T/∆ = 2k′

� Use Chernoff bounds: vk still uninformed after T rounds with probability at most

Pr[X < k] ≤ Pr[X < k′] = Pr

[
X <

1

2
· E[X]

]
≤ e−E[X]/8 = e−k′/4

78 CHAPTER 9. RUMOR SPREADING

Use the lemma for bounds based on diameter and maximum degree.

Theorem 29 (Degree-Diameter Bound). Let T be an integer such that in round T of the
Push protocol with probability 1− 1/n every node is informed. For every connected graph G
it holds T = O(∆ ·max{Diam(G), log n}).

Proof. For every vertex v, consider shortest path from v0 to v.

� Apply previous lemma with k′ = max{Diam(G), 8 lnn}.
� This implies v gets informed after T ≤ 2k′∆ = O(∆ · max{Diam(G), log n}) rounds
with probability 1− e−k′/4 ≥ 1− 1/n2.

� Thus, probability that v is uninformed after T rounds is at most 1/n2.
� Apply union bound: Probability that at least one v is uninformed after T rounds is at
most 1/n.

Some Applications:

k-ary trees Tree where every internal node has exactly k children.

� Diameter is Diam(G) = O(Depth(T))
� Maximum degree is ∆ = k + 1
� Number of nodes is n = O(kDepth(T)).

Degree-Diameter Bound: T = O(kmax{Depth(T), log n}) = O(Depth(T) · k log k) rounds,
all nodes informed w. prob. at least 1− 1/n

Mesh M(ℓ, d)

� Diameter is Diam(G) = d(ℓ− 1)
� Maximum degree ∆ = 2d
� Number of nodes is n = ℓd.

Degree-Diameter Bound: T = O(dmax{d(ℓ−1), log n}) = O(d2ℓ) rounds, all nodes informed
w. prob. at least 1− 1/n.

Hypercube Degree-Diameter Bound: T = O(log2 n) rounds, all nodes informed w. prob.
1− 1/n. Can be improved via different analysis to O(log n) rounds.

9.2.1 Random Geometric Graphs G(n, r)

Stylized model for wireless sensor networks detecting events in an area.

� Area modeled by unit square [0, 1]2

� Sensors are nodes: v1, . . . , vn ∈ [0, 1]2 chosen uniformly at random
� Edges: {vi, vj} ∈ E if and only if dist(vi, vj) ≤ r. Equivalently: Put two disks with
radius r/2 centered at vi and vj. Edge if and only if disks intersect.

� There is a well-connected regime: If r ≥ C
√

(lnn)/n, for C large enough, then G
is connected w.h.p.

9.2. GENERAL GRAPH TOPOLOGIES 79

[Pic: Schema]

How long to spread a rumor via the Push protocol in a well-connected G(n, r)?
Analysis technique: Discretize the unit square.

� Partition unit square [0, 1]2 into Θ(1/r2) squares of side length ℓ = r/(2
√
2) = Θ(r)

� Two squares are adjacent if they touch (vertical, horizontal, diagonal)
� Note: vertices in adjacent squares are adjacent in G

[Pic: Grid partition of unit square]

Claim: Each square S contains a similar number of vertices.
� Number XS of vertices in S is sum of independent binary random variables Xi with
Pr[Xi = 1] = ℓ2 = Θ(r2) ≥ C2(lnn)/n.

� Hence, E[XS] = nℓ2 ≥ C2 lnn and Pr[|XS − E[XS]| ≥ 0.25E[XS]] ≤ n−2 when C
sufficiently large.

This implies several properties in the well-connected regime (all hold whp):
Diameter is O(1/r): Graph of squares has diameter Θ(1/r), each square contains at least

one vertex, there is an edge between any two vertices in neighboring squares.
All degrees in O(nr2): All vertices in the (usually) 8 neighboring squares are neighbors,

all neighbors lie in the (usually) 48 squares of distance at most 3. Hence, deg(v) is
sum of a constant number of XS

Degree-Diameter Bound: All nodes informed after time T = O(nr) w. prob. at least
1− 1/n

Better Bound: Two-Stage Argument
� Square is informed: Contains at least one informed vertex. Rumor spreads among
squares similar to 2D grid M(ℓ, 2) (gives time O(1/r))

� When all squares informed, argue that inside every square rumor spreads similar to a
clique (gives time O(log n))

The following result is given without proof.

Theorem 30. Let T be an integer such that in round T of the Push protocol with probability
1 − 1/n every node is informed. A random geometric graph in the well-connected regime is
structured w.h.p. such that T = O(Diam(G) + log n).

9.2.2 Preferential Attachment Graphs

Very popular class of random graphs, captures some special properties of real-world networks
(e.g., social networks, citation networks, etc.)

� Small diameter
� Non-uniform degree distribution
� Few nodes high degree (hubs), many nodes small (constant) degree
� Power Law: Number of nodes of degree d is proportional to d−β, where β a constant,
often in [2,3]

80 CHAPTER 9. RUMOR SPREADING

In the formal model, we use n as number of vertices, vertex set {v1, . . . , vn}, and a constant
density parameter m ≥ 2. PA graph Gn is recursively defined:

� G1 single vertex with m self-loops
� Gn obtained from Gn−1 by adding new vertex vn
� One after another, the new vertex chooses m neighbors
� Probability that some vertex vx is chosen is proportional to

– current degree of vx, if vx ̸= vn
– “1 + the current degree of vx” if vx = vn

(self-loop probability takes into account current edge starting in vn)

[Pic: PA Graph construction]

Properties of PA-Graphs (w.h.p., for constant m ≥ 2):
� Diameter Θ(log n/ log log n)
� Power law degree distribution: For d ≤ n1/5, expected number of vertices having degree
d is proportional to d−3

� Clustering coefficient (roughly probability that two neighbors of some node are con-
nected by an edge) is Θ(1/n)

Rumor Spreading Results:
� Push-Protocol: After nα rounds with α a small constant, with constant probability
there is still an uninformed node

� Push-Pull-Protocol: Θ(log n) rounds, then all nodes informed with probability 1−1/n.
� Can be improved to Θ(log n/ log log n) when contacts are chosen excluding the neighbor
contacted in most recent round.

Chapter 10

Wireless Networks

Wireless networking has been a great success story over the last decades. From a distributed
computing perspective, in some sense easier to analyze than general message passing systems:
Nodes are often computationally restricted devices; also, they cannot form arbitrary network
topologies, are restricted w.r.t. underlying geometry of the problem. On the other hand,
wireless networks create additional challenges – no individual communication between nodes,
collision and interference problems.

We study medium access control (MAC) protocols for channel access. Basic questions:
� How long until the first node has successfully sent a message? (Leader Election)
� How long until all nodes have sent at least one message? (Coloring)
� How to maximize the number of messages sent in a single round? (Maximum Indepen-
dent Set)

10.1 Leaders, Initialization and the ALOHA Protocol

We first concentrate on a very simple network model:
� There are n devices, all located close to each other.
� Each device can decide in each round to (1) transmit or (2) listen and not transmit.
� If two or more devices decide to transmit in the same round, they interfere with
each other. We call this case a collision.

� Transmissions that collide are unsuccessful. If a node transmits alone, it is successful.

How to find a leader, i.e., how long until a single node can transmit alone?

Easy if nodes have IDs – each node v simply waits ID(v) many rounds until it transmits.
Depending on the IDs this might be very slow.

Algorithm 17: Slotted ALOHA

1 repeat
2 In each round, transmit with probability 1/n
3 until a node has transmitted alone

81

82 CHAPTER 10. WIRELESS NETWORKS

Lemma 59. For n → ∞, the expected number of rounds until the ALOHA protocol allows
one node to transmit alone (i.e., become a leader) is e.

Proof. Let X be the number of transmitting nodes. Probability that in a single round a
node transmits alone:

Pr[X = 1] = n · 1
n
·
(
1− 1

n

)n−1

→ 1

e

for n→∞. Hence, expected time until this happens is e.

Remarks:
� Origin of the name: ALOHAnet, developed at the University of Hawaii.
� How does the leader know that it is the leader? “Distributed acknowledgment”: Nodes
continue ALOHA, including ID of leader in their transmission. Next time a node
transmits alone, the leader learns that it is the leader.

� Then node v that managed to transmit the acknowledgment (alone) is the only re-
maining node which does not know that the leader knows that it is the leader. Now
the leader can acknowledge v’s successful acknowledgement.

� Unslotted time model: Two messages that overlap partially will interfere and no mes-
sage is received. ALOHA also works here, with a factor 2 penalty, i.e., the probability
for a successful transmission will drop from 1/e to 1/(2e). Essentially, each slot is
divided into t small time slots with t → ∞ and whenever a node is not transmitting,
it starts a new t-slot long transmission with probability 1/(2nt).

10.1.1 Initialization

A more involved task is Initialization: Number nodes from 1 to n.

Lemma 60 (Non-Uniform Initialization). If all nodes know n, the expected number of rounds
for initialization is in O(n).

Proof. Simply apply ALOHA to elect a leader repeatedly. Each leader election step takes
expected O(1) time.

What if nodes do not know n? We first assume nodes can do collision detection:
� Two or more nodes that transmit simultaneously are called a collision
� A receiver that hears the collided signals cannot detect any message. Thus, the
channel appears like regular noise without any transmitted signal.

� A receiver with collision detection knows when a collision occured and can distin-
guish regular noise (no transmission) from collision (two or more transmissions).

Consider Algorithm InitCD:
� Iteratively apply a binary partition to the nodes and build a binary tree until only a
single node in a partition remains.

� Once single node is identified, it receives the next free initialization number.

10.1. LEADERS, INITIALIZATION AND THE ALOHA PROTOCOL 83

� Line 14: Transmitting node needs to know whether it was the only one transmitting.
Achievable via acknowledgement rounds: Insert an additional acknowledgement round
for each of the rounds r + 1 and r + 2. To notify v that it has transmitted alone in
round r + 1, every silent node transmits in the ack-round of r + 1, while v is silent.
If v hears message or collision in ack-round of r + 1, it knows it transmitted alone in
round r + 1. Similarly for round r + 2.

Algorithm 18: InitCD

1 nextInitNum ← 0, myBitstring ← ‘x’
2 bitstringsToSplit ← [‘x’] // Queue

3 while bitstringsToSplit is not empty do
4 b ← bitstringsToSplit.pop()
5 repeat
6 if b = myBitstring then
7 choose r uniformly at random from {0, 1}
8 In the next two rounds: Transmit in round r + 1, listen in other round

9 else
10 just listen in both rounds

11 until there was at least 1 transmission in both slots

12 if b = myBitstring then myBitstring ← myBitstring + r

13 for r ∈ {0, 1} do
14 if some node u transmitted alone in round r + 1 then
15 ID(u)← nextInitNum, u becomes passive
16 nextInitNum ← nextInitNum + 1

17 else
18 bitstringsToSplit.append(b + r)

Theorem 31 (Uniform Initialization). Algorithm InitCD with collision detection correctly
initializes n nodes in expected time O(n).

Proof. Consider a successful split: A split in which both subsets are non-empty.
� We build a binary tree with n leaves and n − 1 inner nodes. Hence, there must be
exactly n− 1 successful splits. If we always make successful splits, we need O(n) time.

� Problematic are unsuccessful splits. Then the repeat loop must be executed again.
� In an unsuccessful split of a set of size k ≥ 2, there are 0 or k nodes transmitting in
round r + 1. The probability is

Pr[X ∈ {0, k}] = 1

2k
+

1

2k
≤ 1

2
.

Thus, in expectation we have only O(1) unsuccessful splits until a successful split occurs.

For initialization without collision detection:

84 CHAPTER 10. WIRELESS NETWORKS

� First elect a leader ℓ. Suppose set S wants to transmit.
� Split every round in Algorithm InitCD in two rounds
� Use leader to distinguish between silence and noise
� First round: Every node from S transmits; Second round: S ∪ {ℓ} transmits.
� This gives enough information to distinguish all cases. In the following table, X is
silence/noise/collision, and

√
is a successful transmission

nodes in S transmit nodes in S ∪ {ℓ} transmit

|S| = 0 X
√

|S| = 1, S = {ℓ}
√ √

|S| = 1, S ̸= {ℓ}
√

X

|S| ≥ 2 X X

Indeed, this implies that in general we can replace the assumption of collision detection with
the assumption that a leader exists. In particular, this shows

Corollary 13. Given a leader ℓ, Algorithm InitCD can be implemented without collision
detection to correctly initialize n nodes in expected time O(n).

10.1.2 Leader Election

Given that we can omit collision detection if we have computed a leader, let us return to the
leader election problem. The ALOHA protocol also delivers a whp guarantee:

Lemma 61. The ALOHA protocol elects a leader in O(log n) rounds w.h.p.

Proof. Exercise.

What about uniform leader election, i.e., when the nodes do not know n?

Algorithm 19: UniformLeadElect

1 for k = 1, 2, 3, . . . do
2 for i = 1 to c · k do
3 Transmit with probability p = 1/2k

4 if v was the only node which transmitted then v becomes the leader

Theorem 32. If n is unknown, Algorithm UniformLeadElect can be used to elect a leader
in time O(log2 n) w.h.p.

Proof. Nodes transmit with probability 2−k for c · k rounds, for k = 1, 2, 3,
� First p will be too high, lots of collisions
� When k ≈ log n, then nodes transmit with probability approximately 1/n
� For simplicity let n = 2x, a power of 2. Then after O(log n) iterations, we have p = 1/n.

10.1. LEADERS, INITIALIZATION AND THE ALOHA PROTOCOL 85

� Previous lemma shows: At this point we can elect a leader w.h.p. in O(log n) rounds,
i.e., within the corresponding execution of the second for-loop

� We have to try log n estimates until k ≈ log n, the total runtime until we reach k = x
becomes O(log2 n) w.h.p.

Faster uniform leader election with collision detection?

Algorithm 20: ULE-CD

1 repeat
2 Transmit with probability 1/2
3 if at least one node transmitted then
4 all nodes that did not transmit leave the protocol

5 until one node transmits alone

Theorem 33. If n is unknown, Algorithm ULE-CD can be used to elect a leader in time
O(log n) w.h.p.

Proof. Exercise.

We can be even faster. Consider Algorithm Fast-ULE-CD. In Phase 1, the algorithm
computes a rough estimate of log n. This is further refined using a binary search in Phase
2. Finally, the estimate for log n is made even more precise in the last phase using a biased
random walk. Throughout, the algorithm is assumed to stop immediately as soon as a single
node transmits alone (and, hence, a leader is found).

Let X denote the number of nodes that transmit in a single round. We first consider
bounds on the probability that more than a single node or no node at all transmits, since
based on these events we develop our estimate of log n in all three phases. We analyze these
values in each of the three phases, where transmission is governed by i, j and k that estimate
log n.

Lemma 62. If j > log n+ log log n, then Pr[X > 1] ≤ 1
logn

.

Proof. Each node transmits with probability 1/2j < 1/2logn+log logn = 1
n logn

. Hence, the

expected number of nodes transmitting is E[X] ≤ n
n logn

= 1
logn

. Using Markov inequality:

Pr[X > 1] ≤ Pr[X > E[X] · log n] ≤ 1

log n
.

Corollary 14. If i > 2 log n, then Pr[X > 1] ≤ 1
logn

.

Lemma 63. If j < log n− log log n, then Pr[X = 0] ≤ 1
n
.

86 CHAPTER 10. WIRELESS NETWORKS

Algorithm 21: Fast-ULE-CD

1 Exponential Growth - Phase 1

2 i← 1
3 repeat
4 i← 2 · i
5 Transmit with probability 1/2i

6 until no node transmitted
7 Binary Search - Phase 2

8 l← i/2
9 u← i

10 while l + 1 < u do
11 j ← ⌈(l + u)/2⌉
12 Transmit with probability 1/2j

13 if no node transmitted then u← j else l← j

14 Biased Random Walk - Phase 3

15 k ← u
16 repeat
17 Transmit with probability 1/2k

18 if no node transmitted then k ← k − 1 else k ← k + 1

19 until exactly one node transmitted

Proof. Each node transmits with probability 1/2j > 1/2logn−log logn = logn
n

. Hence, the

probability that a node is at most 1− logn
n

. The probability for a silent slot is

Pr[X = 0] ≤
(
1− log n

n

)n

≤ e− logn =
1

n
.

Corollary 15. If i < 1
2
log n, then Pr[X = 0] ≤ 1

n
.

Lemma 64. Let y be such that 2y−1 ≤ n ≤ 2y, i.e., y ≈ log2 n. If k > y + 2 then
Pr[X > 1] ≤ 1/4.

Proof. Markov inequality:

Pr[X > 1] = Pr

[
X >

2k

n
E[X]

]
< Pr

[
X >

2k

2y
E[X]

]
< Pr[X > 4E[X]] ≤ 1

4
.

Lemma 65. If k < y − 2 then Pr[X = 0] ≤ 1/4.

Proof. A similar analyis is possible to upper bound the probability that a transmission fails
if the estimate is too small. Since k < y − 2, we obtain

Pr[X = 0] =

(
1− 1

2k

)n

< e−n/2k < e−2y−1/2k < e−2 <
1

4
.

10.1. LEADERS, INITIALIZATION AND THE ALOHA PROTOCOL 87

Lemma 66. If y − 2 ≤ k ≤ y + 2, then Pr[X = 1] is constant.

Proof. Transmission probability is p = 1
2y±Θ(1) = Θ(1/n). The lemma follows with an adap-

tation of Lemma 59.

Lemma 67. Let |u − log n| ≤ log log n. Then with probability 1 − 1/ log n we find a leader
in Phase 3 in O(log log n) rounds.

Proof. Sketch of the argument:

� Suppose u is already close to log n. Then for any k, Lemmas 64 and 65 show that
the random walk has a good bias towards an interval where a single transmission per
round is likely.

� One can show: In O(log log n) rounds we get Ω(log log n) rounds with k ∈ [y− 2, y+2]
the interval around n.

� Lemma 66 then shows that the expected number of rounds with exactly one transmis-
sion is O(log log n).

� Chernoff bounds imply that with probability 1 − 1/ log n there is at least one such
round, i.e., we elect a leader.

Theorem 34. If n is unknown, Algorithm Fast-ULE-CD can be used to elect a leader with
probability at least 1−O(log logn

logn
) in time O(log log n).

Proof.

� Phase 1 should end with estimate of 1
2
log n ≤ i ≤ 2 log n in O(log log n) rounds.

� Probability that Phase 1 terminates too early or too late (i.e., an error occurs in a
round) is at most 1/ log n (Corollaries 14 and 15)

� Phase 2 should end with estimate of log n − log log n ≤ j ≤ log n + log log n that is
exact up to log log n-terms. Phase 2 is binary search on an interval of length O(log n),
so this takes O(log log n) rounds.

� Probability that Phase 2 terminates too early or too late (i.e., an error occurs in a
round) is at most 1/ log n (Corollaries 14 and 15)

� By union bound: Probability that an error occurs in O(log log n) rounds of Phases 1
and 2 is at most O(log log n/ log n).

� If no error occurs, estimate u for log n is at most log log n away. Probability that this
happens at least 1−O(log logn

logn
).

� Apply previous lemma to show that Phase 3 terminates with a leader. Overall algo-
rithm needs O(log log n) rounds with probability at least 1−O(log logn

logn
).

With a more involved analysis, one can slightly improve the bound to the following near-
optimal trade-off:

Corollary 16. If n is unknown, Algorithm Fast-ULE-CD can be used to elect a leader with
probability at least 1− 1

logn
in time log log n+ o(log log n).

88 CHAPTER 10. WIRELESS NETWORKS

10.2 Modeling Interference

Crucial aspect for MAC protocols: Modeling interference and collision

A first example: Disk Graph Model.
Simple model, used extensively for algorithm design in the 80/90s:

� There are n base stations. Each base station has associated mobile devices, wants to
transmit a message to them

� Mobile devices located in an area around the base station
� Suppose mobile device of station i is close to several base stations {i, j, k, ...}. If stations
i and j transmit simultaneously, signals interfere and mobile device cannot decode any
message

Formally, we model this using a conflict graph based on disks:
� Nodes V are base stations. Node vi is a point in the Euclidean plane
� Mobile devices are represented by a disk with radius ri ≥ 1 around vi
� Disks around vi and vj intersect ⇒ Base stations are in conflict since mobile devices
are close to several stations ⇒ add an edge {vi, vj} to E

� Resulting conflict graph G = (V,E) is a disk graph – captures all pairwise conflicts
among base stations

� Special case: Unit-Disk Graph, all radii ri = 1.
� A subset I ⊆ V is conflict-free if there is no edge among vertices in I. A conflict-free
set of nodes is an independent set in G.

[Pic: Disk Graph]

Problem: Disk graphs can only express symmetric conflicts. In many cases conflicts are
asymmetric, e.g., with directed communication and different sender/receiver locations.

More elaborate: Protocol Model
� There are n links. Link ℓi has sender si and receiver ri. All senders and receivers are
points in the Euclidean plane

� si wants to transmit message only to ri, but also reaches other receivers rj
� Suppose for rj, sender si is roughly at the same distance or closer than sender sj:

dist(si, rj) ≤ (1 + δ) · dist(sj, rj),

where dist is distance in the plane and δ > 0 is a constant. Then link ℓj is in conflict
with link ℓi (but possibly not vice versa).

� Intuitively: Long links likely to be in conflict, short links are robust
� Directed conflict graph G = (V,E): For each link ℓi add a node vi to V . Directed
edge (vi, vj) ∈ E iff ℓj is in conflict with ℓi.

� A subset of links I ⊆ V is conflict-free if no vertex in I has an incoming edge from
any other vertex in I. A conflict-free set of nodes is an independent set in G.

[Pic: Senders, Receivers, Conflicts, Conflict Graph]

Problem: Conflicts are binary (∃ incoming edge or not). In reality, a conflict arises only if
the amount of communication and interfering signals on a channel becomes too large.

10.2. MODELING INTERFERENCE 89

Even more elaborate: SINR Model

� There are n links. Link ℓi has sender si and receiver ri. All senders and receivers are
points in the Euclidean plane

� si wants to transmit message only to ri, but also reaches other receivers rj
� Sender si with transmission power pi. Signal strength decays exponentially over
distance. Received power at distance d from sender is pi/d

α, where α > 1 is a constant.
� Consider receiver ri. Incoming signal from si has strength

pi
(dist(si, ri))α

Incoming interfering signals from the other senders {sj | j ̸= i} have total strength

∑
j ̸=i

pj
(dist(sj, ri))α

Inherent noise in the channel is a constant γ > 0.
� The signal-to-interference-plus-noise-ratio (SINR) is

SINRi =
pi/(dist(si,ri))α

γ +
∑

j ̸=i
pj/(dist(sj ,ri))α

� Link ℓi is in conflict if SINRi is too small, i.e., SINRi ≤ β, for some constant β
(common assumption in many systems: β ≥ 1).

� Again long links quickly in conflict, short links are robust
� Depends also on power: Links with silent senders quickly in conflict, links with loud
senders are more robust

[Pic: Links, Power, SINR, Conflict Graph]

Suppose transmission powers pi are given and fixed. Then the SINR model yields a directed
conflict graph with edge weights

� Suppose all parameters are > 0.
� For every directed pair of nodes (vj, vi), define a suitable edge weight

w(vj, vi) = min

1,
β · (dist(si, ri))α · pj

pi · (dist(sj, ri))α ·
(
1− γ·β·(dist(si,ri))α

pi

)

that captures the “damage” that sender sj causes at receiver ri.
� Link ℓi is in conflict ⇔ Incoming damage is too large, i.e., indegree greater than 1:

SINRi ≤ β ⇐⇒
∑
j ̸=i

w(vj, vi) ≥ 1

90 CHAPTER 10. WIRELESS NETWORKS

since

β ≥ SINRi

⇔ β ·

(
γ +

∑
j ̸=i

pj
(dist(sj, ri))α

)
≥ pi

(dist(si,ri))α

⇔ β · (dist(si,ri))
α

pi

(
γ +

∑
j ̸=i

pj
(dist(sj, ri))α

)
≥ 1

⇔ β(dist(si,ri))α

pi
· γ +

∑
j ̸=i

β(dist(si, ri))
αpj

pi(dist(sj, ri))α
≥ 1

⇔
∑
j ̸=i

β(dist(si, ri))
αpj

pi(dist(sj, ri))α
≥ 1− γβ(dist(si,ri))α

pi

⇔
∑
j ̸=i

β(dist(si, ri))
αpj

pi(dist(sj, ri))α
(
1− γβ(dist(si,ri))α

pi

) ≥ 1

⇔
∑
j ̸=i

min

1,
β(dist(si, ri))

αpj

pi(dist(sj, ri))α
(
1− γβ(dist(si,ri))α

pi

)
 ≥ 1

⇔
∑
j ̸=i

w(vj, vi) ≥ 1

� We used in the derivation above that

1− γβ(dist(si, ri))
α

pi
> 0,

which is equivalent to the natural condition

pi/(dist(si,ri))α

γ
> β,

i.e., the power of every link is sufficient to make the link successful and make the signal
come through the noise (when there is no interference from others).

� A subset of links I ⊆ V is conflict-free if for every vertex in I the indegree from other
vertices in I is at most 1:∑

j∈I,j ̸=i

w(vj, vi) < 1 for all vi ∈ I.

We call I an independent set.

[Schema: SINR model → weighted conflict graph]

For the subsequent algorithms, we will forget about all details of the Disk-Graph,
Protocol, or SINR model. We simply assume we are given a directed, weighted
conflict graph with edge weights in [0, 1]. Unweighted conflict graphs that result from
Disk-Graph or Protocol model are expressed using binary edge weights in {0, 1}.

10.3. COLORING 91

10.3 Coloring

Suppose every node has a single message and wants to make one successful (i.e., conflict-free)
transmission.

Goal: Given a conflict graph, color the vertices with a set of colors. Every color class I ⊆ V
must be conflict-free, i.e., an independent set. Minimize the number of colors.

Color classes might be time slots. Therefore, coloring problem is sometimes termed latency
minimization (minimize time until every node has transmitted once), or link scheduling.

Consider Algorithm LogColor, an ALOHA-style procedure in which all nodes randomly
attempt to make successful transmissions. The probability for transmission attemps decays
exponentially over the time phases.

Algorithm 22: LogColor

1 for k = 1, 2, 3, . . . do
2 for i = 1 to (4 · 2k) · c · lnn do
3 Transmit with probability p = 1/2k

4 if v transmitted and was conflict-free then v leaves the protocol

Running time of LogColor governed by the following density measure of the instance.
Consider a weighted, directed conflict graph G = (V,E,w) with edge-weights w(e) ∈ [0, 1].
The max-average indegree MaxAvg(G) is given as follows. Consider for every induced
subgraph the average indegree of the nodes, and take the maximum average indegree of all
induced subgraphs:

MaxAvg(G) = max
G′=(V ′,E′)⊆G

∑
v∈V ′

deg−G′(v)

|V ′|
.

[Example: Graph, MaxAvg indegree]

Theorem 35. Algorithm LogColor terminates after O((1 + MaxAvg(G)) · log n) rounds
w.h.p.

Proof. Let the critical value k be such that 2k−1 ≤ 4 · (1 +MaxAvg(G)) ≤ 2k.
� Phase: Consists of all rounds in the second for-loop with the same value of k
� Critical phase: The phase in which k has critical value
� Phases keep doubling in length⇒ takes only O((1+MaxAvg(G)) · log n) rounds until
critical phase starts

� Length of critical phase is O((1 +MaxAvg(G)) · log n) rounds
We consider the critical phase and number the rounds of this phase t = 1, 2, 3, . . .

� Let X t
v be the random variable s.t. X t

v = 1 if v transmits in round t and 0 otherwise.
Note E[X t

v] = p = 1/2k.
� Consider subgraph Gt = (Vt, Et) induced by all nodes that are still participating in the
protocol in the beginning of round t (i.e., Vt are all nodes still in need of a successful
transmission)

92 CHAPTER 10. WIRELESS NETWORKS

� Let nt = |Vt| the number of remaining nodes in round t
� For the overall expected indegree:

E

[∑
vi∈Vt

deg−Gt
(vi)

]
= E

∑
vi∈Vt

∑
vj ̸=vi,vj∈Vt

w(vj, vi) ·X t
vj

=
∑
vi∈Vt

∑
vj ̸=vi,vj∈Vt

w(vj, vi)

2k

≤
∑
vi∈Vt

∑
vj ̸=vi,vj∈Vt

w(vj, vi)

4(1 +MaxAvg(G))

=
nt

4
· 1

1 +MaxAvg(G)
·
∑
vi∈Vt

deg−Gt
(vi)

nt

≤ nt

4

� Consider nodes v with expected indegree E[deg−Gt
(v)] ≤ 1/2. Denote their set by V s

t .
� There must be at least nt/2 nodes in V s

t – if not the total expected indegree would be
larger than nt/4.

� v ∈ V s
t encounters lots of interference only with small probability, since, by Markov

inequality,

Pr[v is in conflict] = Pr[deg−Gt
(v) ≥ 1] = Pr[deg−Gt

(v) ≥ 2 · E[deg−Gt
(v)]] ≤ 1/2

� v being in conflict depends only on which subset of other nodes decide to transmit.
This is independent of v’s own tranmission decision:

Pr[v successful in round t] = Pr[v transmits and v not in conflict]

= Pr[X t
v = 1] · Pr[v not in conflict] ≥ 1

2k
· 1
2

Now consider how many nodes leave the protocol over time.
� In round t every node in V s

t successful with probability at least 1/(2 · 2k).
� Expected number of successful nodes in round t is at least |V s

t |/(2 · 2k) ≥ nt/(4 · 2k).
Expected number of nodes that remain for round t+ 1 is, thus,

E[nt+1] ≤
∞∑
h=0

(
1− 1

4 · 2k

)
h · Pr[nt = h]

=

(
1− 1

4 · 2k

) ∞∑
h=0

h · Pr[nt = h]

=

(
1− 1

4 · 2k

)
E[nt]

� Recursive application gives E[nt+1] ≤ n ·
(
1− 1

4·2k
)t
. Using t = (4 · 2k) · c · lnn, we see

E[nt+1] ≤ n · e−c lnn = 1/nc−1

10.3. COLORING 93

� nt+1 is a non-negative integer, so Pr[nt+1 > 0] ≤ E[nt+1] = 1/nc−1. At the end of
the critical phase, Pr[nt+1 = 0], i.e., the probability that all nodes have successfully
transmitted, is at least 1− 1/nc−1.

How does MaxAvg(G) relate to chromatic number χ(G), i.e., the optimum number of
colors in the best coloring?

First consider disk graphs to outline the argument.

Theorem 36. For any disk graph G the chromatic number χ(G) = Ω(MaxAvg(G)). Algo-
rithm LogColor computes an O(log n)-approximation.

Proof. Consider a disk graph G and an optimal coloring of G.
� TreatG as weighted graph with symmetric weights w(vi, vj) = w(vj, vi), where w(vi, vj) =
w(vi, vj) = 1 if {vi, vj} ∈ E and 0 otherwise.

� Consider node vi and all neighbors vj with larger disk radius rj ≥ ri
� Geometry: Every independent set I can contain at most 5 neighbors of vi with larger
disk radius. Otherwise, at least two neighbor disks would intersect and could not be
both in I.

[Pic: Disk, Neighborhood, at most 5 conflict-free neighbors with larger radius]

We denote the maximum indegree from independent larger-disk neighbors by ρ(G) ≤ 5. We
prove a lower bound on the optimal number of colors χ(G):

� Consider subgraph G′(V ′, E ′) with the max-average indegree.
� Consider the total indegree from nodes with higher disk radius. Each color class
contributes at most ρ(G) to this indegree. Hence, for every node vi ∈ V ′∑

vj∈V ′,rj≥ri

w(vj, vi) ≤ ρ(G)χ(G)

� On the other hand,

MaxAvg(G) =
∑
vi∈V ′

deg−G′(vi)

|V ′|

=
1

|V ′|
∑
vi∈V ′

∑
vj∈V ′

w(vj, vi)

≤ 1

|V ′|
∑
vi∈V ′

∑
vj∈V ′,rj≥ri

w(vj, vi) + w(vi, vj)

≤ 1

|V ′|
∑
vi∈V ′

2 · ρ(G) · χ(G)

= 2ρ(G) · χ(G)

Hence χ(G) = Ω(MaxAvg(G)/ρ(G)). The theorem follows since ρ(G) ≤ 5.

94 CHAPTER 10. WIRELESS NETWORKS

More generally, consider the inductive independence number ρ(G) determined as follows.
� First define symmetric weights:

w̄(vi, vj) = w̄(vj, vi) =
1

2
(w(vj, vi) + w(vi, vj))

Note for disk graphs w̄(vi, vj) = w(vi, vj).
� Consider an ordering π of the nodes (e.g., decreasing disk radius). For each ordering
π and node vi, let Γπ(vi) be the set of nodes that come before vi in the ordering (e.g.,
all nodes with higher radius).

� Consider any independent set I ⊆ V and any node vi. We compute the indegree w.r.t.
symmetric weights from earlier nodes of I (e.g., indegree from independent disks with
higher radius): ∑

vj∈Γπ(vi)∩I

w̄(vj, vi)

� The ordering number ρπ(G) of G is the maximum indegree of any node from earlier
nodes in any independent set I:

ρπ(G) = max
vi∈V

max
I independent set

∑
vj∈Γπ(vi)∩I

w̄(vj, vi)

� For disk graphs G and decreasing-disk-radius ordering π we saw above ρπ(G) ≤ 5.
� In general, the inductive independence number ρ(G) is the best ordering number:

ρ(G) = min
π ordering of nodes

ρπ(G)

Corollary 17. For every weighted, directed conflict graph G, the chromatic number χ(G) =
Ω(MaxAvg(G)/ρ(G)). Algorithm LogColor computes an O(ρ(G) · log n)-approximation.

Proof. The proof follows by using the inductive independence number ρ(G) in Theorem 36.
� Consider subgraph G′(V ′, E ′) with max-average indegree.
� Consider total indegree w.r.t. symmetric weights w̄ from nodes that are earlier in the
optimal ordering π. Each color class contributes at most ρ(G) to this indegree. Hence,
for every node vi ∈ V ′ ∑

vj∈V ′,π(vj)≤π(vi)

w̄(vj, vi) ≤ ρ(G)χ(G)

� On the other hand,

MaxAvg(G) =
∑
vi∈V ′

deg−G′(vi)

|V ′|

=
1

|V ′|
∑
vi∈V ′

∑
vj∈V ′

w(vj, vi)

≤ 1

|V ′|
∑
vi∈V ′

∑
vj∈V ′,π(vj)≤π(vi)

w(vj, vi) + w(vi, vj)

10.3. COLORING 95

= 2 · 1

|V ′|
∑
vi∈V ′

∑
vj∈V ′,π(vj)≤π(vi)

w̄(vj, vi)

≤ 2 · 1

|V ′|
∑
vi∈V ′

ρ(G) · χ(G)

= 2ρ(G) · χ(G)

Hence χ(G) = Ω(MaxAvg(G)/ρ(G)).

For many interference models, the resulting conflict graphs have small inductive indepen-
dence numbers. Small upper bounds can be shown even for simple node orderings. Algorithm
LogColor computes approximately-optimal colorings in all these models.

Model Ordering Upper Bound on ρ(G)

Disk Graphs Disk Radius 5

Protocol Model Link Length

⌈
π

arcsin δ
2(δ+1)

⌉
− 1

IEEE 802.11 model Link Length 23

Distance-2-Matching Disk Radius O(1)

Distance-2-Coloring Disk Radius O(1)

SINR, Length-Monotone Powers Link Length O(log n)

SINR, Sqrt-Power Link Length O(1)

SINR, Power Control Link Length O(1)

10.3.1 Acknowledgements

Consider a link-based model, e.g., the Protocol or the SINR model. How does the sender
si realize it was successful, i.e., the receiver successfully received the message? We consider
acks and assume bidirectional communication – receiver ri becomes sender, sender si
becomes receiver. If ri successfully received the message, it sends an ack to si.

Consider Algorithm LogColorAck. Every second round, every sender that is still in the
protocol waits for ack from its receiver. Only if receiver successfully gets the message, it
sends an ack to si in the next round with same probability. Sender keeps on transmitting
every second round with probability p until receives the ack.

Transmitting acks is essentially sending a message in a dual instance:
� Senders become receivers and vice versa. The dual confict graph G̃ has the same
vertices, all directed edges, and weights w̃ with w̃(vj, vi) determined by roles of senders
and receivers interchanged for each link ℓi.

� Let MaxAvg(G, G̃) = max{MaxAvg(G),MaxAvg(G̃)} be the maximum of the max-
average indegrees of both G and G̃.

96 CHAPTER 10. WIRELESS NETWORKS

Algorithm 23: LogColorAck

1 for k = 1, 2, 3, . . . do
2 for i = 1 to (4 · 2k)2 · c · lnn do
3 In the first round:
4 Sender transmits message with probability p = 1/2k

5 Receiver listens
6 In the second round:
7 If receiver successfully received message in first round,
8 it transmits ack with probability p = 1/2k

9 Sender listens
10 if ack successfully received then v leaves the protocol

Theorem 37. Algorithm LogColorAck terminates after O((1 + MaxAvg(G, G̃))2 · log n)
rounds w.h.p.

Proof. Adjust proof of Theorem 35. Define the critical phase as the one with k such that
2k−1 ≤ 4(1 +MaxAvg(G, G̃)) ≤ 2k. Consider iterations t = 1, 2, 3, . . . , 16 · 22k · c · lnn of the
critical phase.

� Note MaxAvg(G, G̃) ≥ MaxAvg(G) and repeat the arguments above. Thus, the
expected indegree for senders is E

[∑
vi∈Vt

deg−Gt
(vi)
]
≤ nt

4
and the expected number of

successful senders in round t is at least 1
4·2k · nt.

� Hence, for the number of successfully received messages

E[number of receivers that get msg. | nt senders each send w. prob. 1/2k] ≥ 1

4 · 2k
·nt.

� Since MaxAvg(G, G̃) ≥ MaxAvg(G̃), the same analysis applies to receivers and the
dual conflict graph. Hence, for any number of h receivers that transmit with probability
p = 1/2k each, expected number of successfully received acks is

E[number of senders getting ack | h receivers each send w. prob. 1/2k] ≥ 1

4 · 2k
· h.

� However, only E[h] = 1
4·2k · nt receivers actually attempt to transmit an ack in the

second round. Thus,

E[number of senders that get ack in iteration t] ≥
(

1

4 · 2k

)2

· nt.

� Remaining analysis as above: Expected number of nodes that remain for iteration t+1

E[nt+1] ≤
(
1− 1

16 · 22k

)
E[nt]

so E[nt+1] ≤ n ·
(
1− 1

16·22k
)t
. Use t = 16 · 22k · c · lnn. Hence, in the critical phase with

probability at least 1− 1/nc−1 all senders successfully transmit and receive the ack.

But wait – how does a receiver ri realize it was successful, i.e., the sender successfully received
the ack? Ack-ack? :)

10.4. MAXIMUM INDEPENDENT SET 97

10.4 Maximum Independent Set

Consideration of acks is possible but tedious, so we assume in this section that nodes do
realize whether their transmission attempt was successful.

Goal: Find a good independent set, i.e., maximize number of successful transmissions.
We use learning algorithms that achieve a good number of successful transmissions on
average over time. This task also termed throughput or capacity maximization.

Note: No fairness guarantees – some nodes might be successful all the time, other nodes
never successful. We simply try to make a lot of successful communication attempts over-
all. Algorithms with provable trade-offs of fairness and throughput: (Mostly) open
problem!

10.4.1 Online Learning

We apply online learning algorithms to steer transmission attemps. The basic online
learning scenario is a simple, round-based reward maximization process:

� T rounds, K actions in each round
� In round t = 1, . . . , T : The decider chooses one action randomly
� After action is chosen, decider sees a reward in [0, 1] for the chosen action
� Decider updates its probability distribution for choice of action, then next round starts.
� Goal: Decider tries to maximize its total reward of chosen actions

We model our domain as a special case:
� Each node uses some algorithm for online learning to steer transmission over T rounds
� In each round t, node vi has 2 actions to choose from: Transmit/Not transmit
� Define xt

i = 1 if node vi decides to transmit in round t, xt
i = 0 otherwise.

� We assume node gets a utility ui(x
t) in round t for chosen action:

ui(x
t) =

1 xt

i = 1 and vi successful

−1 xt
i = 1 and vi not successful

0 xt
i = 0

Why exactly this utility? Gives nice properties, allows to prove Lemma 68 below.
� Actual rewards shall be in [0, 1], define reward ri(x

t) = (ui(x
t) + 1)/2 ∈ {1, 0, 0.5}

� Note: Reward ri(x
t) for vi depends on complete vector xt of actions chosen by all

nodes, since it depends on other actions if vi’s transmission attempt is (un-)successful

Algorithm Exp3-WN is an application of the general-purpose online learning algorithm
Exp3 to our special case. It is a carefully designed exploration/exploitation trade-off:

� Most of the time, exploit your experience from the past.
� Action weights w0, w1 adjusted to express past success experiences. Choose actions
with probabilities proportional to weight.

� Every once in a while: Be crazy and explore (non-)transmission with probability 1/2.
� Exploration probability η chosen carefully based on total time interval T

98 CHAPTER 10. WIRELESS NETWORKS

Algorithm 24: Exp3-WN

1 Set η ← min
{
1,
√

2
e−1
· 1
T

}
// exploration probabililty

2 w0 ← 1, w1 ← 1 // weights ∼ previous success experience

3 for t = 1, . . . , T do
4 Draw random number x ∈ [0, 1]
5 if x < η then p← 1/2 else p← w1

w0+w1
// Exploration or Exploitation

6 Transmit with probability p
7 if transmitted and successful then
8 x← 1 · w0+w1

w1(2/η−1)+w0

9 w1 ← w1 · ex // increases transmission prob.

10 if not transmitted then
11 x← 1

2
· w0+w1

w0(2/η−1)+w1

12 w0 ← w0 · ex // decreases transmission prob.

Why even consider using Exp3? What kind of guarantee do we get from using it?

Consider a history of actions for all nodes x = (x1, . . . , xT). We define the regret of node
vi in this history as

Ri(x) = max
y=0,1

T∑
t=1

ri(y, x
t
−i)−

T∑
t=1

ri(x
t)

Here (y, xt
−i) is the vector (x

t
1, . . . , x

t
i−1, y, x

t
i+1, . . . , x

t), i.e., all actions as in xt, only the one
for vi replaced by y. Ri(x) captures the maximum gain in reward that node vi would get
when always transmitting or always not transmitting.

[Pic: Sequence of chosen actions, Sequence never-transmit, Sequence always-transmit, Re-
gret]

Exp3-WN is a no-regret algorithm. Suppose node vi is using Exp3-WN to compute xt
i.

The other nodes can have arbitrary behavior. Then for vi it is known that the average
regret over time goes to 0

Ri(x)/T → 0 for T →∞

Rest of the chapter: Simplify matters a bit. Assume all nodes use Exp3 and history x will
be such that every node has 0 average regret Ri(x)/T ≤ 0 (and, thus, Ri(x) ≤ 0). This
will be the key property for our analysis – all results hold similarly when nodes use any
other no-regret algorithm.

The rewards defined above allow to show the following condition.

Lemma 68. Suppose a history x is such that node vi has regret Ri(x) ≤ 0. Then at least
half of vi’s transmission attempts have been successful.

10.4. MAXIMUM INDEPENDENT SET 99

Proof. Note that

0 ≥ Ri(x) = max
y=0,1

T∑
t=1

ri(y, x
t
−i)−

T∑
t=1

ri(x
t)

=
1

2

(
max
y=0,1

T∑
t=1

ui(y, x
t
−i)−

T∑
t=1

ui(x
t)

)

≥ 1

2

(
0−

T∑
t=1

ui(x
t)

)

Thus,
∑T

t=1 ui(x
t) ≥ 0. Hence, for every unsuccessful attempt with ui(x

t) = −1 there is at
least one other successful attempt.

10.4.2 Learning in Bounded-Independence Graphs

In general, the no-regret property by itself does not guarantee good throughput!

Consider an unweighted conflict graph that is a star with n−1 leaves. Construct a no-regret
history x as follows:

� Suppose the star center transmits the whole time, i.e., xt
1 = 1 for all t = 1, . . . , T

� Suppose leaf nodes never transmit, i.e., xt
i = 0, for all i = 2, . . . , n and t = 1, . . . , T

� Every node has 0 regret!
� Average number of successful transmissions is 1. Optimal would be n− 1. By always
transmitting, the star center “kills” a large independent set.

[Pic: Star, bad independent set, explain no-regret property]

We restrict attention to graphs, in which “no vertex can kill a large independent set”. For
unweighted graphs G consider the independence number α(G):

� Consider the maximum indegree caused by any node at any independent set:

α(G) = max
vi∈V

max
I independent set

∑
j∈I

w(vi, vj)

� Note: α(G) = k means that there is no induced subgraph that is a star with k + 1 or
more outgoing edges from the center.

� Note: Consider any independent set I. If any node v ̸∈ I decides to join I, it causes a
conflict for at most α(G) other nodes of I.

Examples: There are disk graphs with α(G) = n − 1. For unit-disk graphs, α(G) ≤ 5.
(Why?)

For edge-weighted conflict graphs, we generalize this definition as follows. A conflict graph
G is c-independent if for every independent set I ⊆ V there is a subset I ′ ⊆ I s.t.

� for every node vi ∈ V the total indegree of I ′ received from vi satisfies∑
vj∈I′

w(vi, vj) ≤ c.

100 CHAPTER 10. WIRELESS NETWORKS

� I ′ is not too small: |I ′| ≥ |I|/2.

If an unweighted graph G is c-independent, it has independence number α(G) = O(c · log n).
(Exercise)

Theorem 38. Consider a c-independent conflict graph. Suppose there is a history x such
that all nodes vi have Ri(x) ≤ 0. Then the average number of successful transmissions is an
O(c)-approximation of the optimum.

Proof. In the optimum we simply assign a maximum independent set I∗ to transmit in every
round t = 1, . . . , T , for a maximum number of |I∗|T successful transmissions.

How many successful transmissions do the nodes make in x? Lemma 68: At least half of all
transmission attempts are successful, so consider total number of attemps.

� Consider vi ∈ I∗. Let ti =
∑T

t=1 x
t
i be number of i’s attempts. If ti ≥ T/2, then great!

� Suppose at least half the nodes in |I∗| have ti ≥ T/2. Then at least |I∗|T/4 attempts
in total. With Lemma 68 this implies an 8-approximation.

What if only few nodes of I∗ do attempt transmission frequently?
� Suppose at most half the nodes in |I∗| have ti ≥ T/2. Consider the infrequent nodes,
i.e, I∗0 ⊆ I∗ are all nodes from I∗ with ti < T/2. Note: |I∗0 | ≥ |I∗|/2

� For vi ∈ I∗0 , let T0 = {t | xt
i = 0} be the rounds where vi decided to stay silent.

� No regret:
∑T

t=1 ui(1, x
t
−i)−

∑T
t=1 ui(x) ≤ 0. This implies∑

t∈T0

ui(1, x
t
−i) ≤ 0.

� Similar argument as in Lemma 68 shows that vi would have been unsuccessful in at
least half of the rounds of T0

� Consider total indegree of vi from transmitting nodes in all T rounds. This at least
|T0|/2 = (T − ti)/2 > T/4 since ti < T/2.

� Graph is c-independent: Every attempt causes indegree at most c on I ′ ⊆ I∗0 with
|I ′| ≥ |I∗0 |/2 ≥ |I∗|/4.

� Total indegree of all nodes in I ′ in all rounds at least |I ′| ·T/4. This implies that there
were at least |I ′|T/(4c) attempts of all nodes in total.

� Total number of attempts is |I ′| · T/(4c) ≥ |I∗| · T/(16c) With Lemma 68 this implies
a 32c-approximation.

10.4.3 Jamming-Resistant Learning

In many applications, a system is not the only one using a channel or frequency band. Mul-
tiple subsystems in the same channel give rise to jamming. Can we use learning algorithms
to maximize the throughput even in channels with (adversarial) jamming?

We consider is a standard approach for modeling jamming conditions.
� The system runs for T rounds.

10.4. MAXIMUM INDEPENDENT SET 101

� A (T ′, 1 − δ)-jammer can decide to make a node unsuccessful. It can decide this
individually for each node.

� For v ∈ V and every subinterval of T ′ rounds, the jammer can render at most a
(1− δ)-fraction of rounds unsuccessful for v. It every round t, the jammer can make
a jamming decision for each node even after it knows the transmission decisions of all
nodes in round t.

� Node v does not learn if unsuccessful transmission is due to (successful) attempts of
other nodes or jamming.

[Pic: Jamming, Time Interval, Fraction of Rounds]

We again consider a c-independent conflict graph and nodes using no-regret learning.
� A phase is an interval of k rounds. Learning will be applied to phases.
� During each phase, node v executes the same action in all rounds, i.e., transmit in all
k rounds or not

� Phases of other nodes do not need to be synchronized
� Phase R is labeled successful if a fraction ν of the rounds in the phase were successful.

We define some desirable properties inspired by the proof of Theorem 38. Consider a history
x of transmission decisions by all nodes.

� qv is the fraction of phases where v attempted transmission, wv is the fraction of
successful phases

� x is γ-successful if for every node v

qv ≤
2wv

γ
.

The number of attempted transmissions is roughly the number of successful ones.
� x is η-blocking if for every node with qv ≤ 1

4
η we have for the fraction of phases fv

that are unsuccessful due to other nodes

fv ≥
1

4
η and

∑
u∈V

w(u, v)qu ≥
1

8
η.

If a node did not attempt many transmission phases, this was because other nodes
made a lot of phases unsuccessful, and the average indegree was large.

It would be great if the algorithms will compute a history x that is γ-successful and η-
blocking for large parameters of γ and η, because these conditions can be used to show that
there is a lot of throughput.

Theorem 39. Suppose the algorithms implemented by all nodes compute a history x which
is γ-successful and η-blocking. Against (T ′, 1 − δ)-jammers the average throughput of x
guarantees an approximation factor of

O

(
max(1, c)

ν · γ · η

)

102 CHAPTER 10. WIRELESS NETWORKS

Proof. The proof uses duality of linear optimization problems. Consider the maximum in-
dependent set I∗ and the set I ′ ⊆ I∗ as in the definition of c-independence. It represents a
feasible solution of the following linear program (LP) by setting xv = 1 iff v ∈ I ′.

Maximize
∑
v∈V

xv

subject to
∑
v∈V

w(u, v)xv ≤ c ∀u ∈ V

xv ∈ [0, 1] ∀v ∈ V.

Now consider the system when we have (T ′, 1− δ)-jammers.
� Due to individual jamming of nodes, each round t has a possibly different maximum
independent set I∗t .

� Consider the subset I ′t ⊆ I∗t as in the definition of c-independence
� Let xv be the fraction of times when v is in I ′t

xv =
|{t | v ∈ I ′t}|

T

As each I ′t satisfies the indegree constraint from c-independence, the solution is again
feasible for the LP.

� The objective function value is at least half (since using I ′t instead of I∗t) of the optimal
average number of successful transmissions that would have been possible under the
jamming pattern chosen by the jammers.

Strong duality of linear programs – the essentials:
� For every LP there is a dual LP.
� The optimum objective function value of an LP equals the optimum objective
value of its dual.

� Every feasible solution of an LP has less objective value than every feasible solution
of the dual.

The dual for our LP is the following Dual-LP

Minimize
∑
v∈V

c · yv +
∑
v∈V

zv

subject to
∑
u∈V

w(u, v)yu + zv ≥ 1 ∀v ∈ V

yv, zv ≥ 0 ∀v ∈ V

Construct a feasible dual solution from the history x computed by the algorithms, which is
γ-successful and η-blocking.

� Set yv =
1
η
· 8qv and zv =

1
η
· 4qv. Solution fulfills all the constraints:

� If qv ≥ 1
4
η, constraint is fulfilled since zv ≥ 1.

10.4. MAXIMUM INDEPENDENT SET 103

� If not, η-blocking yields
∑

u∈V w(u, v)qu ≥ 1
8
η. Plugging in shows constraint fulfilled.

How different are the objective function values? Since we constructed feasible solutions for
both LP and Dual-LP, strong duality implies∑

v∈V

| {t | v ∈ I ′t} |
T

≤
∑
v∈V

c · 8
η
· qv +

4

η
· qv .

Since history x is γ-successful,∑
v∈V

| {t | v ∈ I ′t} |
T

≤
∑
v∈V

max(1, c) · 24

η · γ
· wv .

Remember that a phase is of length k.
� In a successful phase node v is successful in at least νk rounds.
� Hence, wv and total number of successful rounds are related by a factor of ν.
� This yields a factor of O(max(1, c)/(ηγν)) difference between the objective function
values of our solution for Dual-LP (based on the history x) and LP (for at least half
of the optimum).

� The solution computed in history x is only this factor worse than the optimum.

We apply no-regret algorithms to phases in the following way:
� Phase length: k = T ′.
� Success fraction for phases: ν = 1

2
δ

� Action chosen in the beginning of phase and fixed throughout the phase
� Utililty obtained for phase R

uR
i (x) =

1 vi transmitted in R and wR

i ≥ 1
2
δ

−1 vi transmitted in R and wR
i < 1

2
δ

0 vi did not transmit in R

If the algorithms compute a history with no regret, such a history is 1-successful and 1-
blocking.

Corollary 18. If all nodes use no-regret algorithms with the above given parameters, they
compute a O(1/δ)-approximation in systems with (T ′, 1− δ)-jammers.

The framework in Theorem 39 is very flexible and allows many more aspects to be incorpo-
rated. One more example: What if T ′ is unknown to the nodes?

� Phase length: k = 1, i.e., no phases, single rounds
� Utility obtained for phase/round R

uR
i (x) =

1 vi transmitted in R and successful

− δ
2−δ

vi transmitted in R and unsuccessful

0 vi did not transmit in R

104 CHAPTER 10. WIRELESS NETWORKS

If the algorithms compute a history with no regret, such a history is δ
2
-successful and δ-

blocking.

Corollary 19. If all nodes use no-regret algorithms with the above given parameters, they
compute a O(1/δ2)-approximation in systems with (T ′, 1− δ)-jammers and unknown T ′.

Chapter 11

Random Walks

11.1 Basics

Random walks are a general toolbox for distributed algorithms in networks.
� Undirected or directed graph G = (V,E)
� Token starts in round 0 in some node v0 ∈ V
� In round t = 1, 2, 3, . . ., token moves from vt to an out-neighbor vt+1

� Out-neighbor chosen uniformly at random
� Memoryless, Markov chain
� Lazy walk: With prob. 1/2 stay in vt. Otherwise, choose random out-neighbor

Periods
� Periodic random walk with period k ≥ 2: Re-visits v0 only in rounds t that are
multiples of k. Examples: random walks on directed cycle, bipartite graph, etc.

� Aperiodic network: All random walks are aperiodic, i.e., have period 1
� Note: Lazy random walk is always aperiodic. Often gives (asymptotically) the same
convergence bounds

Stationary Distribution, Mixing, and Hitting
� We denote by ptu,v = Pr[token starting from u is in v at time t]
� For every strongly connected network that is aperiodic (or using lazy-walk), the random
walk converges to a unique stationary distribution:

p∗v = lim
t→∞

ptu,v for all u ∈ V

� Mixing time of a walk starting in u is M(G, u), where

M(G, u) = min

{
t

∣∣∣∣ ∥ptu,v − p∗u,v∥1 ≤
1

4

}
There is nothing special about 1/4. For every ε > 0, if t = M(G, u) then after t log 1/ε
rounds, the distance to the stationary distribution is

∥pt log 1/εu,v − p∗u,v∥1 ≤ ε

105

106 CHAPTER 11. RANDOM WALKS

� Mixing time of graph G is

M(G) = max
u∈V

M(G, u)

� Hitting time H(G, u, v) of a random walk starting in u is the expected time to first
arrive in v. Hitting time of graph G is

H(G) = max
u,v∈V

H(G, u, v)

In general, it is known that M(G),H(G) ∈ O(n3). More fine-grained bounds can be shown
using graph parameters such as conductance and spectral gap of the Laplacian matrix of G.
Significantly improved bounds often exist for regular graphs.

[Examples Random Walk, Mixing Time, Hitting Time]

11.2 Load Balancing with Random Walks

Threshold-Based Load Balancing
� Directed graph G = (V,E), strongly connected
� Edges are direct connections (roads, cable, etc.)
� There are m load units (tasks, rental cars, e-scooter, etc.),
� Initially the load units are distributed arbitrarily on the network nodes
� Every node v has only τv ∈ {0, 1, 2, . . . ,m} free slots (parking slots, memory blocks)
� τv is the threshold of node v ∈ V . We assume that∑

v∈V

τv ≥ m.

Goal: Find a balanced distribution of the m units s.t. every v ∈ V has at most τv units

Random Walks
� Every node shifts spare units to its neighbors
� Intially, all m units are active. Every v has τv free slots.
� If a unit gets a free slot at the current node v, it stays there and becomes passive.
� Otherwise, it is shifted by v to a random neighbor of v
� All active units execute concurrent and parallel random walks

[Example: Network, load units, free slots, random walks]

How many rounds until a balanced distribution is obtained? When are all units passive?

For a distribution ℓ of the units, we denote by

Φ(ℓ) =
∑
v∈V

max(ℓv − τv, 0)

the number of active units in ℓ.

11.2. LOAD BALANCING WITH RANDOM WALKS 107

Algorithm 25: Random-Walk Protocol

1 All units are active
2 for rounds t = 1, 2, 3, . . . at every node v do
3 Let ℓtv denote the load of node v in round t
4 Av ← Set of max(ℓtv − τv, 0) units from the active units at v
5 All units not in Av become passive
6 for every unit in Av do
7 Choose an out-neighbor of v uniformly at random
8 Send the unit to the chosen neighbor

Theorem 40. Given any initial distribution ℓ0 of the units, the expected number of rounds
required by the Random-Walk Protocol to reach a balanced distribution is

O(H(G) · log Φ(ℓ0)) .

We first observe the following lemma.

Lemma 69. Given any initial distribution ℓ0 of the units, consider the first round T in
which Φ(ℓT) ≤ 7

8
· Φ(ℓ0). It holds that E[T] = O(H(G)).

Proof. Initially Φ(ℓ0) active units and (at least) the same number of free slots in the network.
� Match each active unit to a free slot at one of the nodes
� Every free slot is assigned at most once.
� Let x be an active unit, initially on node u, which is matched to a free slot at its target
node v. How long does x need until she reaches v?

� An initial simplifying assumption: Every unit x stays active forever.
� T (x) is the number of rounds until x reaches node v. Note E[T (x)] = H(G, u, v) ≤
H(G).

� Using Markov inequality:

Pr[T (x) ≥ 2H(G)] ≤ 1

2
.

A phase is an interval 2H(G) consecutive rounds. In a single phase, how many units will
visit their target node at least once?

� Let R(x) = 1 if x reaches her target node during first 2H(G) rounds; 0 otherwise.
� x executes independent random walk and has probability at least 1/2 to visit its
target node at least once. Hence

E

[∑
x active

R(x)

]
≥ Φ(ℓ0)

2
.

Using a Chernoff bound

Pr

[∑
x active

R(x) ≤ 1

2
· Φ(ℓ

0)

2

]
≤ e−Φ(ℓ0)/8 ≤ e−1/8 ,

since Φ(ℓ0) ≥ 1 (otherwise we would be balanced in the beginning).

108 CHAPTER 11. RANDOM WALKS

How many phases do we need until at least Φ(ℓ0)/4 units visited their respective target
nodes at least once?

� Let Ki be the event that this happens in the i-th phase, i.e., the event that in phase i
at least Φ(ℓ0)/4 units visited their respective target nodes at least once.

� K1 occurs if
∑

x activeR(x) > Φ(ℓ0)/4, and by the above observation

Pr [K1] ≥ 1− e−1/8 .

� If K1 does not occur, consider the second phase. Note that event K2 is not indepen-
dent from the decisions made in the first phase.

� However, our argument above shows that for any initial distribution, the probability
of Ki in any single phase i is at least 1− e−1/8.

� After k phases the probability that none of K1, . . . , Kk has occured is at most (e−1/8)k.
� We can view this as Bernoulli process over phases with success when Ki occurs. The
expected number of phases until this happens is at most

∞∑
k=0

(1− p)k · p · (k + 1) =
1

p
=

1

1− e−1/8

so the event occurs after expected time at most H(G) · 2/(1− e−1/8).

So far we assume that all active units stay active forever. We denote by M the set of
the first Φ(ℓ0)/4 units that visit their target node (when they would be active forever).

� Units in M become passive and abort the walk as soon as they reach their target
� Protocol does not know which unit to be placed on which slot. What can go wrong?

Problem 1: x ∈M gets slot on “wrong” node, aborts walk before it visits target node v.
Problem 2: x ∈M visits v, but some other unit has already “stolen” the slot for v.

Problem 1 is good for x, but it might become a Problem 2 for a different unit. So let’s
consider Problem 2:

� Slot is stolen, instead of x a different unit x′ has become passive
� If x ∈ M was active forever, would reach its target and realize that her slot is stolen,
then we can account x towards the unique single active unit x′ that has become passive
on the slot of x

� In the worst case, the other unit x′ ∈M .

We do the accounting in the first round TM when all units of M have visited their target
at least once (assuming they virtually continue their walk forever). By time TM at least
M/2 = 1

8
· Φ(ℓ0) units must have become passive. Note that E[TM] = O(H(G)).

Proof of Theorem 40. We partition the execution time of the protocol into blocks.
� Block 1 starts in round 1. For i = 1, 2, 3, . . ., block i consists of rounds t in which the
number of active units is

(7/8)i−1 · Φ(ℓ0) ≥ Φ(ℓt) > (7/8)i · Φ(ℓ0)

11.2. LOAD BALANCING WITH RANDOM WALKS 109

� Apply the above lemma to every block i: The expected length of block i is O(H(G)).
� It holds that Φ(ℓt) ∈ {0, 1, 2, . . .}. If (7/8)i

∗−1 · Φ(ℓ0) ≥ 1 > (7/8)i
∗ · Φ(ℓ0), then i∗

must be the last block.
� i∗ is the smallest i with (7/8)i · Φ(ℓ0) < 1. It holds that i∗ = ⌈log8/7Φ(ℓ0)⌉.

There are at most O(log Φ(ℓ0)) blocks, every block has expected length of O(H(G)) rounds.

110 CHAPTER 11. RANDOM WALKS

Chapter 12

Blockchain and Consenus

12.1 Cryptocurrencies, Trust, and Consensus

Bitcoin is a cryptocurrency, i.e., a decentralized currency based on cryptographic features.
� We discuss some basic design principles and distributed computing aspects.
� Many more aspects: Protocols, incentives, crypto aspects, etc.
� Only a high-level exposition and details on some aspects of distributed computing,
especially consensus protocols

Key feature of a currency: Trust
� Ancient times: Trade via direct exchange, one could directly see which goods to give
and which ones to receive, immediate and direct negotiation

� Development of currencies: Exchange goods for coins and bills,
� Advantage: Flexibility in time and location, sell stuff here today, buy other stuff
tomorrow over there, easier to collect taxes!

� Trust that everyone else will exchange them for goods and services
� Origin of trust: Country, government, economy etc. Trust generated, e.g., by total
value of money being backed by large amounts of gold or goods

� Trust breaks down: Currency becomes worthless, replaced by other means (e.g., cigarettes
in Germany directly after WWII)

Modern currencies mostly abstract and digital
� Less people use coins and bills, just abstract numbers in our accounts
� Governments often do not keep large gold reserves
� Trust? Generated by a system of (more or less) trusted parties, like government, federal
reserve, banks, credit card companies

� Recent example for significance of trust: Einlagensicherung

What about a decentral currency without a trusted party standing behind it?
� More anonymity, no central control instance
� Enables access to global economy and many more trade possibilities
� Cheaper transactions, no intermediators
� Possibly less secure and easier to use for illegal activities

111

112 CHAPTER 12. BLOCKCHAIN AND CONSENUS

� What happens if something breaks – who is responsible to fix things?
� No manipulation of exchange rate to help the economy
� How to generate trust in such a system?

Bitcoin system, proposed in 2008 by “Satoshi Nakamoto” (pseudonym, real author(s) un-
known). Key idea: The bank is everyone – everyone keeps a record of all bank accounts

More concretely:
� A peer-to-peer system of all users maintains the transactions of all bank accounts
� Transactions are blocks attached to the history (→ blockchain).
� Suppose Alice wants to send some money to Bob
� She sends a message to the network: “I give 50$ to Bob”, signed with her private key
� Network needs to update, takes some time

Is this a good design? Suppose Alice tries a Double Spending Attack:
� Send message again to different part of the network with different content: “I give 50$
to Charles”, signed with her key.

� Which message is accepted? Can she spend her money twice?
� Solution with centralized trusted party: Checks if Alice has the money, issues
transaction number (TAN), a key that can be used only once, generated based on
content of message. Trusted party sends TAN to the network, update is executed.

� But we want a distributed system! Idea: Network plays the role of trusted party
and issues the “TAN”

� Network decides based on majority vote which meassage is the truth and which trans-
action is accepted into the blockchain.

� Low trust in a single node of the P2P network, but high in the system of all nodes.
Fraud in the system ⇒ overall trust suffers ⇒ currency drops in value, everyone loses.

Update of blockchain via consensus:
� Each coin has a unique ID
� Alice sends message to Bob: “I give the coin with ID x to Bob”, signs it.
� Bob gets message and checks based on his copy if Alice has the coin to do so
� Bob sends to everyone in the network that he accepts the transaction
� Open transactions are collected by everyone in a block
� If majority agrees with the contents of a block, it is appended to the blockchain and
the transactions take effect

� If Alice sends concurrent message “I give the coin with ID x to Charles”, content of
block becomes ambigious, finally block gets discarded

Eventually, this solution needs consensus among a majority of network nodes on the content
of a block and where the coin of ID x will end up.

12.2 Fault Tolerance and Byzantine Generals

Byzantine Fault Tolerance
� Distributed system composed of normal/regular/honest items, faulty items

12.2. FAULT TOLERANCE AND BYZANTINE GENERALS 113

� Faulty items produce any sort of unpredictable output
� There is work on faulty nodes, faulty edges, faulty memory cells, faulty ...
� Usually poses super hard challenges.

Byzantine Generals Problems:

� Basic scenario to study consensus against faults
� Several armies are located outside of a city. Each division commanded by a different
general. Generals try to coordinate on an attack plan

� Some parts of the army (and possibly even some generals!) are corrupted by the enemy.
� Consensus problem: (How) can the loyal generals agree on consistent attack plans?

Faulty Communication: Two Generals Problem

� Two generals know that they both decided to attack, need to agree on the same time
� Communication is faulty: Messages might be lost.
� Can they reach consensus on an attack time and both know that they both agreed?

Theorem 41. There is no consensus algorithm for the Two Generals Problem.

Proof. Consider a communication protocol P that solves the problem, i.e., at some point the
generals agree on a time to attack and know that they both agreed.

� Consider last message m sent in P , w.l.o.g. sent to general 1.
� W.l.o.g. m is needed to convince general 1 that both generals agree, i.e., before m
arrives, general 1 is not sure that both agreed to an attack time.

� Since general 2 cannot know if m arrives, he must be sure that both agreed before
sending m

� But general 1 was not sure of that before he received m → contradiction.

Faulty Nodes: Byzantine Generals Problem

� n generals try to coordinate on an action, some generals are traitors.
� Devise consensus algorithm for generals to agree on attack (A) or retreat (R)
� Initially, every general has personal opinion
� Possible messages {A,R}, arrive correctly, sender/receiver known & correct, absence
of msgs can be detected, no crypto

� No change of content, origin, destination of msgs, no manipulation by absence of msgs
� Goal: All loyal generals should decide to take the same action

Reduction to Commander/Lieutenant Case

� Loyal generals broadcast their true opinion. Suppose a traitor also sends same (ma-
nipulated) opinion to every loyal general

� Then all loyal generals execute same protocol on same input and reach consensus in
final decision.

� Hence, traitors must send different messages to different generals. However, it is not
necessary to identify traitors, we just want consensus of final decisions among loyal
generals

114 CHAPTER 12. BLOCKCHAIN AND CONSENUS

� Rephrase as equivalent problem: One general sends orders to all others. Design
algorithm and use it once for every general in the role as commander to send its orders
(= initial opinion) to everyone else

→ One commander C, n− 1 lieutenants L1, L2,. . .
Interactive consistency constraints:
(IC1) All loyal lieutenants must agree on an order.
(IC2) Loyal lieutenant must follow order of a loyal commander.

Lemma 70. There is no consensus algorithm for the Three Generals Problem.

Proof. Consider the case for one commander and two lieutenants L1, L2. The following two
scenarios are equivalent for a loyal L1:

1. C is traitor, sends A to L1, R to L2. L2 sends R to L1.
2. C is loyal, sends A to both L1,L2. Traitor L2 sends R to L1.

Same situation for L1, but different actions are needed → solution impossible.

[Pic Three Generals Scenarios]

Lemma 71. There is no consensus algorithm for m traitors and m+ 1 < n ≤ 3m.

Proof. Simulation argument. Suppose n = 3m and assume a consensus algorithm for 3m-
Generals Problem exists (Albanian generals). Use it to solve the Three Generals Problem
(Byzantine generals):

� Byzantine commander → Albanian commander, m− 1 Albanian lieutenants.
� Byzantine lieutenant → m Albanian lieutenants.
� At most one Byzantine general is traitor → at most m Albanian generals are traitors
� Use consensus algorithm to solve the Albanians instance
� All loyal lieutenants reach same decision in the end
� Loyal Byzantine generals read off the decision from their Albanian lieutenants, implies
IC1 and IC2, i.e., consensus for the Byzantine Three Generals Problem

→ Contradiction.

More traitors only make the problem harder (until there is just 1 loyal agent → trivial)

[Pic 3m generals, m traitors]

For n ≥ 3m + 1 consider the Algorithm Oral-Messages OM(m,S, vS). It is a recursive
procedure that uses the number m of traitors as input. It relies on a majority vote among
the lieutenants and shows inductively that their consistent votes can steer the loyal generals
to a consistent decision.

[Example: 4 Generals, 1 Traitor. C is traitor: all Li get same msgs. Li is traitor: all Li
receive at least two msgs v]

Theorem 42. The OM(m,S, vS) Algorithm solves the Byzantine Generals Problem for m
traitors and n ≥ 3m+ 1 in time O(nm).

12.2. FAULT TOLERANCE AND BYZANTINE GENERALS 115

Algorithm 26: OM(m,S, vS) for subset of loyal generals

1 Input: Estimated num. traitors m, set S of lieutenants, possibly different
commander message for each lieutenant vS = (vi)i ∈S

2 if m = 0 then
3 Set v′i ← vi (or v

′
i ← R if no msg vi received), for every i ∈ S

4 else
5 for every i ∈ S do
6 Loyal i chooses values viS\{i} = (vij)j∈S\{i} by vij = vi for all j ∈ S, j ̸= i

7 Receives vector w−i = (wi
j)j∈S\{i} ← OM(m− 1, S \ {i}, viS\{i})

8 w−i has entry for every j ∈ S, j ̸= i. Set wi
j ← R if no entry is received.

9 Set wi
i ← vi

10 Set v′i ← majority value of (wj)j∈S // among all wi
j and wi

i = vi

11 return vector of values (v′i)i∈S

Proof. We first prove condition IC2 holds whenever OM(m,S, vS) for any set S of 2k +m
generals and at most k traitors. IC2 applies only when C is loyal. Assume loyal C sends v
to all Li in S.

Induction. Start: m = 0 and loyal commander (i.e., all vS are same). Then the vector of
decisions returned by OM(0, S, vS) yields IC2. Hypothesis: We get IC2 for m − 1. Prove
IC2 for m.

� Consider invocation of OM(m−1, S \{i}, vS\{i}). Since |S| > 2k+m, we have |S|−1 >
2k +m− 1 ≥ 2k.

� By hypothesis: Every loyal Li receives wi
j = v for each loyal Lj.

� At most k traitors, more than k loyal ones among the |S| − 1 Lj’s
� Majority vote gives consistent action for loyal lieutenants i ∈ S.

For the proof that both IC1 and IC2 hold, we again apply an induction. No traitors: OM(0)
gives IC1 and IC2. Hence, assume IC1 and IC2 hold for OM(m−1, S \{i}, vS\{i}) and prove
it for OM(m, vS, S):

� Case 1: C is loyal. Let k = m above, OM(m,S, v) satisfies IC2. IC1 follows.
� Case 2: C is traitor. At most m traitors, C is one, at most m− 1 traitor lieutenants
� At least 3m− 1 lieutenants and 3m− 1 > 3(m− 1).
� Apply induction hypothesis: OM(m− 1, S \ {i}, vS\{i}) when called by Li satisfies IC1
and IC2.

� For each j, any two loyal Li and Li′ receive same wi
j = wi′

j from a loyal lieutenant Lj,
due to IC1 and IC2 of the respective calls of OM(m− 1, S \ {i}, vS\{i}) and OM(m−
1, S \ {i′}, vS\{i′})

� Hence, loyal lieutenants get sufficiently many consistent values from other loyal lieu-
tenants to arrive at consistent decision in the majority step.

� This proves IC1 and the theorem.

116 CHAPTER 12. BLOCKCHAIN AND CONSENUS

12.3 Proof-of-Work Consensus in Bitcoin

In practice, consensus conditions are even harder to achieve. Communication might be
asynchronous, and/or messages might be lost. One can show that even in shared-memory
systems with asynchrony, consensus can be impossible to achieve even when there is
at most 1 traitor.

In principle, obtaining consensus is hopeless. Then again, some protocols work reasonably
well in practice ...

Nakamotos Idea for Bitcoin: Proof-of-Work
� Nodes in P2P network are called miners
� In every step a “random” miner is allowed to decide the consensus action and extend
blockchain by a block

� More precisely, every miner can add a block to the blockchain as long as
(1) he is working on longest chain known in the system
(2) he is the first to solve a computationally hard puzzle

� if two miners solve the puzzle simultaneously, the chain “forks” (splits) and two con-
current chains are being built

� Unlikely to happen. Also every subsequent block must be added to the longest chain
known to the miner, so separate chains will not live long

The computational puzzle is based on cryptographic hash functions. Such a function
� maps input data to a key of fixed length
� computationally easy to verify the mapping for given input
� computationally superhard to invert
� hashes nicely: even usage of keys, neighboring data yields very different keys

The puzzle: If miner wants to add a block, needs to find a nonce for the block to be added
� Nonce: integer number s.t. hash key of the pair (block, nonce) has x leading 0s
� The larger x, the more difficult to find a valid nonce
� Essentially impossible to solve without testing all integers
� x is adjusted based on current hardware/software technology: Single miner should be
able to find a nonce on average only every 10 minutes

� If nonce is found, miner adds (block, nonce) to chain, broadcasts result to everyone.
� This process is called mining.

[Schema: Hash function, block, nonce]

Reward for mining
� If a nonce is found, miner allowed to give himself a reward (i.e., some amount of
bitcoin) for computing it

� Reward decreases by factor of 2 every 4 years, stops at 10−8 B (= 1 “Satoshi”). After-
wards, there will be no further mining reward.

� This is the only way new bitcoins are created, limits total number to roughly 21m.

Forks and Gamblers Ruin

12.3. PROOF-OF-WORK CONSENSUS IN BITCOIN 117

� Suppose two miners solved the puzzle simultaneously. Others have started to extend
one chain. Can a miner overthrow the consensus, make the shorter chain catch up,
and turn this fork into the longest one?

� Suppose miner has probability of p to be the fastest one to solve a puzzle

� Probability that he is for k times the fastest solver is only
(

p
1−p

)k
, exponentially small

� Gamblers Ruin: Same calculation as for a gambler that wants to recover a suffered loss
in a game with bad odds...

� It is suggested to wait for 6 subsequent blocks (ca. 1h) to consider a block really valid.

[Pic: Fork, longer/shorter chain, probabililty of catching up]

Further aspects and issues:
� Instead of proof of work, there exist alternative approaches that can be used for con-
sensus in blockchains (such as, e.g., proof of stake, where permission to add a block
is drawn at random with probabililty corresponding to total money of the miner)

� P2P network and bitcoin accounts are entirely anonymous. Participants are listed
using public keys. Each agent uses her private key to execute transactions, access the
money, mining, etc.

� You lose your private key → your money is GONE! Nobody can access the bitcoins.
They stay listed in the database, though.

� Lots of computing overhead wasted for generating nonces and bitcoins. Does it make
sense? Then again, normal currencies also have overhead...

� What does it mean for a currency that only 21m units exist? Will people keep on
mining and investing time/energy of their machines when there is no reward?

� How can a country collect taxes if the currency system is decentral and anonymous?

Blockchains are not currencies – blockchains are decentralized databases. Can also be
used for contracts, health data, voting procedures, and many more

� There are many “transactions” that need a formal approval by a trusted party
� Example: Contracts. In Germany, many contracts need formal approval by a “Notar”
(e.g., when selling/buying houses, inheritance, etc.)

� There are blockchains allowing smart contracts, where the approval of the trusted
party is generated by majority consensus

� Same principle, blocks contain details about contracts.
� In essence, each block is a (collection of) small programs that implement contract
details and, e.g., execute transfers of money, access rights, etc. once they find the
prerequisites laid down in the contract to be fulfilled.

	Introductory Remarks
	Basics of Communication

	Modeling Assumptions
	Network Model
	Some Graph Terminology
	Computational Model
	Complexity Measures
	Three Representative Models

	Broadcasting Algorithms
	Flooding Algorithm
	Convergecast
	Bottom-Up Computation on Trees
	Pipelined Convergecast
	Upcast
	Applications of Upcast

	Dealing with Asynchrony
	BFS Trees and Asynchrony
	Synchronization
	Synchronizer
	Synchronizer
	A Hybrid: Synchronizer

	Symmetry Breaking
	Coloring
	Coloring Trees and Bounded-Degree Graphs
	Linial's Lower Bound

	Maximal Independent Set (MIS)
	Relations to Coloring
	A Fast Randomized Algorithm for MIS
	Applications

	Minimum Spanning Trees
	GHS Algorithm
	Distributed Dual Greedy
	GKP Algorithm
	Lower Bound

	Distance and Route Approximation
	Exact APSP in Unweighted Graphs
	APSP with Relabeling in Unweighted Graphs
	Weighted Graphs

	Packet Routing
	Deterministic Oblivious Routing
	Randomized Oblivious Routing
	Path Selection for the Hypercube
	Packet Scheduling for the Hypercube
	Packet Routing in General Networks

	Rumor Spreading
	Stars and Cliques
	General Graph Topologies
	Random Geometric Graphs G(n,r)
	Preferential Attachment Graphs

	Wireless Networks
	Leaders, Initialization and the ALOHA Protocol
	Initialization
	Leader Election

	Modeling Interference
	Coloring
	Acknowledgements

	Maximum Independent Set
	Online Learning
	Learning in Bounded-Independence Graphs
	Jamming-Resistant Learning

	Random Walks
	Basics
	Load Balancing with Random Walks

	Blockchain and Consenus
	Cryptocurrencies, Trust, and Consensus
	Fault Tolerance and Byzantine Generals
	Proof-of-Work Consensus in Bitcoin

