Theory of Distributed Systems

Winter Term 2021/22

Prof. Dr. Martin Hoefer Marco Schmalhofer, Giovanna Varricchio JOHANN WOLFGANG

UNIVERSITÄT FRANKFURT AM MAIN

Institute of Computer Science Algorithms und Complexity

Exercise 8

Issued: 14.12.2021 Due: 18.01.2022, **8:15h**

(5 Points)

(5 Points)

Please submit your solution in PDF format by sending an email to {schmalhofer, varricchio}@em.unifrankfurt.de. Make sure that your solution reaches us before 8:15 am! Solutions are discussed on Jan 21st, 10:00h - 12:00h (Zoom Meeting-ID: 963 6309 6725, same password as lecture material). Exercises with * are bonus; they count for your score but not for the sum of points.

Exercise 8.1. Valiant's Trick on the Cube $(9 = 2 + 2 + 3 + 2 \text{ and } 2^* \text{ Points})$

Assume Valiant's trick is applied to the cube $M(\ell, 3)$, i.e., every node selects an (intermediate) target node independently uniformly at random. Routes are selected dimension-by-dimension. To simplify the analysis, each undirected edge is replaced by two directed edges. A directed edge is called (i, j)*increasing* if it increases dimension *i* from *j* to j + 1. Similarly, an edge decreasing dimension *i* from *j* to j - 1 is called (i, j)-decreasing. For example, the edge $(7, 3, 0) \rightarrow (7, 4, 0)$ is (1, 3)-increasing, while the edge $(7, 3, 0) \rightarrow (7, 2, 0)$ is (1, 3)-decreasing.

- a) Give the expected congestion $\mathbb{E}[C(e)]$ of any (i, j)-increasing edge e in terms of i, j and ℓ .
- b) Show that $\mathbb{E}[C(e)] \leq \ell/4$ for every directed edge $e \in E$.
- c) Show that the congestion is $O(\ell)$ with probability at least $1 2^{-\Omega(\ell)}$.
- d) Show that the congestion is $\Omega(\ell)$ with probability at least $1 2^{-\Omega(\ell)}$.
- e^{*}) Show the following stronger result: The congestion is $\Omega(\ell)$ with probability at least $1-2^{-\Omega(\ell^2)}$.

Hint: In every exercise you can assume that ℓ is even!

Exercise 8.2. *h*-relation

Prove Lemma 51 of the lecture notes:

Using Valiant's Trick for routing an arbitrary *h*-relation on the hypercube, the congestion is $C = O(\log n + h)$ whp.

Exercise 8.3. GrowingRank

Solve the exercise in the proof of Lemma 55 in the lecture notes:

Show that packets p_0, \ldots, p_s are distinct, i.e., no packet appears more than once in the delay sequence.

We wish everyone happy holidays and great start into 2022!

The assignments and further information concerning the lecture can be found at http://algo.cs.uni-frankfurt.de/lehre/tds/winter2122/tds2122.shtml

E-mail: schmalhofer@em.uni-frankfurt.de, varricchio@em.uni-frankfurt.de