
Theory of Distributed Systems

Winter Term 2021/22

Prof. Dr. Martin Hoefer
Marco Schmalhofer, Giovanna Varricchio

Institute of Computer Science
Algorithms und Complexity

Exercise 6
Issued: 30.11.2021

Due: 07.12.2021, 8:15h

Please submit your solution in PDF format by sending an email to {schmalhofer,varricchio}@em.uni-
frankfurt.de. Make sure that your solution reaches us before 8:15 am! Solutions are discussed on
Dec 10th, 10:00h - 12:00h (Zoom Meeting-ID: 963 6309 6725, same password as lecture material).
This is the last sheet on Part I.

For all tasks we consider the synchronous CONGEST-model with message size c · log2 n.

Consider the following variant of the Mailing Problem, the Both-Zero Mailing Problem:

Given a graph G with two speci�ed nodes s 6= r as well as bit-vectors b(s) and b(r) of size k for s
and r, respectively. Find out whether there is an index where both bit-vectors are 0, i.e., r wants to

�nd out if there is some i with b
(s)
i = b

(r)
i = 0.

Lemma:

For every m ≥ 1, the Both-Zero Mailing Problem for k = m2 cannot be solved in time o(m2/ logm)
on the hard graph HGm by a distributed algorithm.

Exercise 6.1. Weighted Distances (6 Points)

Use the above lemma to show that in the class of hard graphs �nding any approximation to the

weighted distance between s and r takes Ω(
√
n/ log n) rounds.

Exercise 6.2. Maximum Weighted Cycles (6 Points)

A cycle is a path C = (v1, v2, . . . , vk, v1), where vi 6= vj for i 6= j (walking along the cycle, every

node is visited at most once). In a weighted graph G = (V,E, ω), a maximum weight cycle is a

cycle C such that ω(C) ≥ ω(C ′) for any cycle C ′. In the MaxWeightCycle problem the goal is

to compute the value ω(C∗) of a max-weight cycle C∗ in G; in the distributed setting, every node

should be aware of the value ω(C∗).

Use the above lemma to show that solving MaxWeightCycle in the class of hard graphs takes

Ω(
√
n/ log n) rounds.

Exercise 6.3. Lower Bound for Randomized APSP (10 = 2 + 4 + 4 Points)

Given a bit string x ∈ {0, 1}n−3, the tree Tn(x) is de�ned in the following way: there is a root r with
a left and a right child, cl and cr, respectively. Moreover, there is a set of leaves L = {1, . . . , n− 3}
and, for each v ∈ L, v is a child of cl, if xv = 0, and is a child of cr, otherwise.

In the Locating Leaves (LL) problem, we are given a tree Tn(x), and the goal is to inform the

root about the location of each leaf node v ∈ L (left or right subtree). In particular, an output is a

vector s ∈ {cl, cr}n−3, where si denotes the parent of leaf i.
Let X = {0, 1}n−3 be the set of possible bit strings that can be used to generate an input Tn(x). A
randomized bit string X is generated using a probability distribution over X .
Let A be the set of deterministic distributed algorithms solving LL. A randomized algorithm A is a

probability distribution over A.



a) Show that any deterministic algorithm needs at least 2n−3 di�erent possible outputs to be

correct.

b) Show that for every randomized algorithm A and every randomized input tree Tn(X), it holds

min
a∈A

Pr[a wrong on input Tn(X)] ≤ max
x∈X

Pr[A wrong on input Tn(x)] .

Hint : Consider Pr[A wrong on input Tn(X)].

c) Let X be uniformly distributed on X . Show that there are constants α, β > 0 such that for

any deterministic algorithm a ∈ A using at most t ≤ n−3
4c log2 n

rounds, it holds

Pr[a wrong on input Tn(X)] ≥ 1− α · 2−βn .

Note that the message size is at most c · log2 n.

From b) and c) it follows that every randomized algorithm for LL on Tn(x) using o(n/ log n) rounds
has exponentially small probability of being correct. Notice that the APSP problem is at least as

hard as LL.

The assignments and further information concerning the lecture can be found at

http://algo.cs.uni-frankfurt.de/lehre/tds/winter2122/tds2122.shtml

E-mail: schmalhofer@em.uni-frankfurt.de, varricchio@em.uni-frankfurt.de

http://algo.cs.uni-frankfurt.de/lehre/tds/winter2122/tds2122.shtml
mailto:schmalhofer@em.uni-frankfurt.de
mailto:varricchio@em.uni-frankfurt.de

