Theory of Distributed Systems

Winter Term 2018/2019

Prof. Dr. Martin Hoefer, Niklas Hahn

Exercise 6

UNIVERSITÄT FRANKFURT AM MAIN

Institute of Computer Science Algorithms und Complexity

> Issued: 04.12.2018 Due: 11.12.2018

Exercise 6.1. Function Routing

A function routing problem on a graph G = (V, E) is defined by a function $f : V \to V$. It describes the task that, for every $v \in V$, a message of size $O(\log |V|)$ should be sent from v to f(v). Consider the synchronous CONGEST model. Let D be the dilation of the chosen collection of paths. You can assume that dimension-by-dimension is used for the path selection.

- a) Show that the time complexity for the function routing problem on $M(\ell, 1)$ is O(D), i.e., there is an algorithm that delivers all messages as described by any function $f: V \to V$ in O(D)steps.
- b) Show that the time complexity for the function routing problem on $M(\ell, 2)$ is $\Omega(D^2)$, i.e., there is a function $f: V \to V$ such that any algorithm needs $\Omega(D^2)$ steps to deliver all messages.

(3 + 5 = 8 Points)**Exercise 6.2.** Dimension-By-Dimension Message Routing

How many steps, as a function of D, does Dimension-by-dimension permutation message routing require on the mesh $M(\ell, 3)$...

- a) ... in the synchronous LOCAL-model?
- b) ... in the synchronous CONGEST-model? Show a lower as well as an upper bound.

In both cases, we are interested in the worst-case running time of the algorithm, i.e. the time complexity over all possible permutations. Give the bounds in asymptotic notation. Specify your scheduling policy.

Exercise 6.3. Indirect Networks

Let G = (V, E) be a graph with two special subsets $I \subseteq V$ and $O \subseteq V$ called the inputs and the outputs, respectively. Suppose |I| = |O|. Such a network is called *indirect network*. A path system \mathcal{W} for an indirect network contains a path $P_{u,v}$ from every input $u \in I$ to every output $v \in O$. A permutation routing on indirect networks is given by a permutation $\pi : I \to O$ (rather than $\pi : V \to V$).

Generalize the lower bound of Theorem 23 towards path systems and permutations on indirect networks. In particular, prove a generalized lower bound in terms of n, Δ , and r, where $n = |I|, \Delta$ is the maximum degree of G and r denotes the ratio between the number of nodes and the number of inputs, i.e. r = |V|/n. In the special case of r = 1, your bound should be identical to the original bound.

Please turn over!

(5 Points)

(3 + 3 = 6 Points)

Prove or disprove:

The mesh $M(\ell, d)$ has a Hamiltonian path for every ℓ, d .

Reminder: A Hamiltonian path in a graph G = (V, E) is a path in G that contains every vertex in V exactly once.

The assignments and further information concerning the lecture can be found at http://algo.cs.uni-frankfurt.de/lehre/tds/winter1819/tds1819.shtml