Theory of Distributed Systems

Winter Term 2018/2019

Prof. Dr. Martin Hoefer,

Exercise 2.1. Individual Messages $(6 + 2 = 8 \text{ Points})$

Consider an *n*-vertex network $G = (V, E), V = \{v_1, \ldots, v_n\}$. In the following, let D denote the diameter of the graph G. The **individual messages** (IM) cast requires vertex v_1 to deliver a (distinct) ($\log n$)-bit message to every other vertex in the network along some prespecified shortest route.

- a) Consider the synchronous $\mathcal{CONGEST}\text{-model}$. Prove or disprove each of the following claims regarding the time complexity of the problem.
	- i Time(IM) = $O(D)$ (i.e. there exists a constant $c > 0$ such that for every network G as above, Time(IM,G) $\leq cD$).
	- ii Time(IM) = $O(n)$ (i.e. there exists a constant $c > 0$ such that for every network G as above, $Time(IM,G) \leq cn$.
	- iii Time(IM) = $\Omega(n)$ (i.e. there exists a constant $c > 0$ such that for every $n \ge 1$, there exists an *n*-vertex network G as above for which $Time(IM,G) \geq cn$.
	- iv There exists a constant $c > 0$ such that for every network G as above, Time(IM, G) $> cD$.
- b) Now, consider the synchronous $\mathcal{LOCAL}\text{-model}$. Prove or disprove Time(IM) = $O(D)$ (i.e. there exists a constant $c > 0$ such that for every network G as above, Time(IM,G) $\leq cD$).

Exercise 2.2. Smallest k of m $(2 + 3 = 5 \text{ Points})$

The following policy is proposed for solving the "smallest k of m " problem described in section 4.3.1 of the Peleg book:

- At any given moment along the execution, every vertex keeps only the set of (at most) k smallest items it knows.
- In each step, each vertex sends to its parent an arbitrary element from this set that has not been sent yet.
- a) Prove that using this policy, the k smallest elements must still arrive at the root by time $O(k \cdot Depth(T)).$
- b) For every integer $m \ge 1$, give an example of a tree T and an initial distribution of m elements, where $k = Depth(T) = \lceil \sqrt{m} \rceil$ and the above process takes $\Omega(m)$ steps.

UNIVERSITÄT FRANKFURT AM MAIN

Niklas Hahn Institute of Computer Science Niklas Hahn Institute of Computer Science Algorithms und Complexity

 $\frac{1}{2}$ Issued: 30.10.2018
Due: 06.11.2018 Due: 06.11.2018

JOHANN WOLFGANG GOETHE

Exercise 2.3. Bellman-Ford (5 Points) (5 Points)

Modify the Bellman-Ford algorithm so that it detects its termination. Make sure that the given bounds on the time and message complexity still hold.

Exercise 2.4. Coloring (3 + 3 = 6 Points)

Consider the expansion of the tree-coloring algorithm from the lecture for arbitrary, bounded degree graphs. Here, we just concatenate for all $w \in \Gamma(v)$, $w \neq v$ the strings which the original algorithm would have chosen as new color of node v under the assumption that neighbor w was v's parent in the tree. This reduction step, starting with a legal K-bit coloring, yields a $\Delta(\log K + 1)$ -bit coloring. Assume that the resulting coloring has exactly this length, meaning that each of the entrys that could possibly be shorter is filled with leading zeros.

- a) Prove that the coloring obtained from this reduction step is legal.
- b) Show that the minimum number of bits that can be achieved by iterating this reduction step is of order $\Theta(\Delta \log \Delta)$, i.e. prove corresponding upper and lower bounds on K in $O($)- and Ω ()-notation.

This result is given as Theorem 7.3.8 in Peleg's book. Note that Peleg's estimate of 2Δ instead of $O(\Delta \log \Delta)$ is a bit too optimistic.

The assignments and further information concerning the lecture can be found at <http://algo.cs.uni-frankfurt.de/lehre/tds/winter1819/tds1819.shtml> E-mail: [mhoefer@cs.uni-frankfurt.de,](mailto:mhoefer@cs.uni-frankfurt.de) n.hahn@em.uni-frankfurt.de