Exercise 10 This is the last exercise sheet of the lecture.

Exercise 10.1. *c*-independence

Show the following for an arbitrary unweighted undirected graph G:

- a) If $\alpha(G) \leq c$, then G is c-independent.
- b) If G is c-independent, then G has independence number $\alpha(G) = O(c \cdot \log n)$.

Exercise 10.2. Green IT

Due to the continuous increase in energy costs, we design a learning-based protocol in wireless networks that penalizes unsuccessful transmissions. To do so, we change the utility $u_i(x^t)$ gained for the chosen action. Now $\beta > 1$ is the new cost for an unsuccessful transmission:

$$u_i(x^t) = \begin{cases} 1 & x_i^t = 1 \text{ and } v_i \text{ successful} \\ -\beta & x_i^t = 1 \text{ and } v_i \text{ not successful} \\ 0 & x_i^t = 0 \end{cases}$$

a) Adapt Lemma 68 to the new scenario, i.e. prove the following lemma:

Lemma:

Suppose a history x is such that node v_i has regret $R_i(x) \leq 0$. Then at least a $\frac{\beta}{1+\beta}$ -fraction of v_i 's transmission attempts have been successful.

Use the lemma from a) to show a result similar to Theorem 38 for the new scenario:

Theorem:

Consider a c-independent conflict graph. Suppose there is a history x such that all nodes v_i have $R_i(x) \leq 0$. Then the average number of successful transmissions is an $O(c \cdot \beta)$ -approximation of the optimum.

Let I^* denote a maximum independent set. For $v_i \in I^*$, let $t_i = \sum_{t=1}^T x_i^t$ be the number of attempts by node v_i .

- b) First, consider the case that at least half the nodes $v_i \in I^*$ have $t_i \ge T/2$. Prove the theorem for this case.
- c) Second, take a look at the remaining case that at least half the nodes $v_i \in I^*$ have $t_i < T/2$. Prove the theorem for this case.

Theory of Distributed Systems

Summer Term 2020

Prof. Dr. Martin Hoefer Marco Schmalhofer

> Issued: 07.07.2020 Due: 14.07.2020, **14:15h**

(2 + 2 + 4 = 8 Points)

(3+3=6 Points)

JOHANN WOLFGANG

UNIVERSITÄT FRANKFURT AM MAIN

Institute of Computer Science

Algorithms und Complexity

Exercise 10.3. *l* Rumors

Consider the following scenario: Instead of a single rumor that all nodes need to learn, there are ℓ different rumors. Each rumor starts at some node. The Push protocol is used.

Bound the number of rounds required until a given node v knows all rumors with probability at least 1-1/n in terms of n, Δ, L , and ℓ . Here, n is the number of nodes in the graph, Δ is the maximum degree, and L is the maximum length of a shortest path from v to a node which knows a rumor at the start.

Exercise 10.4. Random Walks – Bonus $(2 + 3 + 1 = 6^* \text{ Points})$

We show that the bound of Theorem 40 is asymptotically tight. Let us analyze the Random-Walk Protocol on a complete graph G with n vertices. One node in the complete graph is a source node s and one is a target node $t \neq s$. Initially, all $\ell_s^0 = m$ load units are located at s, and $\ell_v^0 = 0$ for all $v \neq s$. Node t has $\tau_t = m$ free slots, and every other node has no free slot, $\tau_v = 0$ for $v \neq t$.

a) Show that the hitting time is H(G, s, t) = n - 1. Make use of symmetry.

Let X_i be the number of rounds until load unit *i* reaches *t*, for $i = 1, \ldots, m$.

b) Show that there is a constant c > 0 such that

$$\Pr\left[\max_{i=1,\dots,m} X_i > (n-1)\log_4 m\right] \ge c.$$

You may assume that $n \geq 3$.

Hint: The inequality $\left(1 - \frac{1}{n-1}\right)^{n-1} \ge 1/4$ for each $n \ge 3$ can be helpful.

c) Conclude from a) and b) that the expected number of rounds until a balanced distribution is reached is at least $c \cdot H(G) \cdot \log_4 m$.

The assignments and further information concerning the lecture can be found at http://algo.cs.uni-frankfurt.de/lehre/tds/sommer20/tds20.shtml