Summer Term 2020

Prof. Dr. Martin Hoefer Marco Schmalhofer

Exercise 7

Issued: 16.06.2020 Due: 23.06.2020, **14:15h**

Exercise 7.1. Function Routing

A function routing problem on a graph G = (V, E) is defined by a function $f : V \to V$. It describes the task that, for every $v \in V$, a message of size $O(\log |V|)$ should be sent from v to f(v). Consider the synchronous **CONGEST** model. Let D be the dilation of the chosen collection of paths. You can assume that dimension-by-dimension is used for the path selection.

- a) Show that the time complexity for the function routing problem on $M(\ell, 1)$ is O(D), i.e., there is an algorithm that delivers all messages as described by any function $f: V \to V$ in O(D) steps.
- b) Show that the time complexity for the function routing problem on $M(\ell, 2)$ is $\Omega(D^2)$, i.e., there is a function $f : V \to V$ such that any algorithm needs $\Omega(D^2)$ steps to deliver all messages.

Exercise 7.2. Dimension-By-Dimension Message Routing (3 + 5 = 8 Points)

How many steps, as a function of the dilation D, does dimension-by-dimension permutation routing require on the mesh $M(\ell, 3)$...

- a) ... in the synchronous LOCAL-model?
- b) ... in the synchronous CONGEST-model? Show a lower as well as an upper bound.

In both cases, we are interested in the worst-case running time of the algorithm, i.e., the time complexity over all possible permutations. Give the bounds in asymptotic notation. Specify your packet scheduling policy.

Exercise 7.3. Indirect Networks

Let G = (V, E) be a graph with two special subsets $I \subseteq V$ and $O \subseteq V$ called the inputs and the outputs, respectively. Suppose |I| = |O|. Such a network is called *indirect network*. A path system \mathcal{W} for an indirect network contains a path $P_{u,v}$ from every input $u \in I$ to every output $v \in O$. A permutation routing problem on indirect networks is given by a bijective function $\pi : I \to O$ (rather than a complete permutation $\pi : V \to V$).

Generalize the lower bound of Theorem 23 towards permutation routing problems on indirect networks. In particular, prove a lower bound in terms of n, Δ , and r, where $n = |I|, \Delta$ is the maximum degree of G and r denotes the ratio between the number of nodes and the number of inputs, i.e., r = |V|/n. For r = 1, your bound should be identical to the one in Theorem 23.

Please turn over!

UNIVERSITÄT Frankfurt am main

Algorithms und Complexity

Institute of Computer Science

(3 + 3 = 6 Points)

(5 Points)

Prove or disprove:

The mesh $M(\ell, d)$ has a Hamiltonian path for every ℓ, d .

Reminder: A Hamiltonian path in a graph G = (V, E) is a path in G that contains every vertex in V exactly once.

The assignments and further information concerning the lecture can be found at http://algo.cs.uni-frankfurt.de/lehre/tds/sommer20/tds20.shtml