Theory of Distributed Systems

Summer Term 2020

Prof. Dr. Martin Hoefer

Prove or disprove the following bounds:

For every n-vertex, D-diameter graph $G = (V, E)$, there exists an execution of Dijkstra's algorithm requiring

- a) $\Omega(D^2)$ time,
- b) $\Omega(|E|)$ messages.
- c) $\Omega(nD)$ messages.

Exercise 3.2. Synchronizers (5 = 2 + 3 Points)

Consider the gap of a synchronizer ν , which is the maximum length of a period that some processor v stays in some pulse p . Formally, we define

$$
\text{Time}_{gap}(\nu) = \max_{v,p} t(v,p+1) - t(v,p).
$$

- a) Design a scenario realizing $\text{Time}_{gap}(\alpha) = \Omega(Diam(G))$, in which some processor is forced to wait for time $\Omega(Diam(G))$ until it can increase its pulse number.
- b) Prove that this is the worst possible, i.e., $\text{Time}_{gap}(\alpha) = O(Diam(G)).$

UNIVERSITÄT FRANKFURT AM MAIN

Marco Schmalhofer Institute of Computer Science
Marco Schmalhofer Algorithms und Complexity

Exercise 3
Due: 19.05.2020, 14:15h
Due: 19.05.2020, 14:15h Due: 19.05.2020, 14:15h

Exercise 3.1. Dijkstra $(6 = 2 + 2 + 2 \text{ Points})$

The following policy is proposed for solving the "smallest k of m " problem described in Section 4.3.1 of Peleg's book:

- At any given moment along the execution, every vertex keeps only the set of (at most) k smallest items it knows.
- In each step, each vertex sends to its parent an arbitrary element from this set that has not been sent yet.
- a) Prove that using this policy, the k smallest elements must still arrive at the root by time $O(k \cdot Depth(T))$.
- b) For every integer $m > 1$, give an example of a tree T and an initial distribution of m elements, For every integer $m \ge 1$, give an example of a tree T and an initial distribution where $k = Depth(T) = \lceil \sqrt{m} \rceil$ and the above process takes $\Omega(m)$ steps.

Exercise 3.4. $Coloring$

$$
(6=3+3\,\,{\rm Points})
$$

Consider the generalization of the tree-coloring algorithm from the lecture to arbitrary, bounded degree graphs. The algorithm concatenates for all $w \in \Gamma(v)$, $w \neq v$ the strings which the treecoloring algorithm would have chosen as new color of node v if neighbor w was v's parent in the tree. This reduction step, starting with a legal K-bit coloring, yields a $\Delta \cdot (\lceil \log K \rceil + 1)$ -bit coloring. Assume that the resulting coloring has exactly this length, i.e., each of the entrys that could possibly be shorter is filled with leading zeros.

- a) Prove that the coloring obtained from this reduction step is legal.
- b) Show that the minimum number of bits that can be achieved by iterating this reduction step is of order $\Theta(\Delta \log \Delta)$, i.e., prove that there are constants $c > c' > 0$ such that for any length more than $c \cdot \Delta \log \Delta$ the process reduces the length and for a length $c' \cdot \Delta \log \Delta$ the process does not reduce the length.

This result is given as Theorem 7.3.8 in Peleg's book. Note that Peleg's estimate of 2Δ instead of $O(\Delta \log \Delta)$ is a bit too optimistic.