1

Optimization and Uncertainty

Summer term 2023

Assignment 8

Prof. Dr. Martin Hoefer Conrad Schecker, Lisa Wilhelmi

Exercise 8.1 Online PERSUADE

Consider n boxes and assume that all boxes and distributions \mathcal{D}_i , i = 1, ..., n, are known. The boxes are opened in a known order. In round i, S opens box i and sends a signal to \mathcal{R} ("take box i" or "do not take box $i^{"}$). If \mathcal{R} does not take the box, the process continues with the next box. Otherwise, if \mathcal{R} takes the box, the process stops. Note that when sending the signal in round *i*, \mathcal{S} only knows the content of boxes 1, ..., i.

- a) For IID boxes, show that there exists a direct and persuasive $(1-1/e)^{-1}$ -competitive algorithm. Hint: Use a modification of Algorithm 12 from the lecture notes where, instead of a random box, the modified algorithm takes either the first yes-box or the last no-box (the rest remains unchanged).
- b) For independent (but not necessarily identical) boxes and the SSQ condition fulfilled with the SSQ box in round $i^* = n$, show that there exists an algorithm with constant competitive ratio.
- c) For independent (but not necessarily identical) boxes and the SSQ condition fulfilled with the SSQ box in round $i^* < n$, show that there is no algorithm with finite competitive ratio.

Exercise 8.2 DELEGATION

A class of instances for DELEGATION with $n \ge 2$ IID boxes is given as follows:

For each box $i \in [n]$, a random prize-pair $(s_i, r_i) \in \{0, 1\}^2$ is obtained with two independent Bernoulli trials such that $\Pr[s_i = 1] = \Pr[r_i = 1] = \frac{1}{n}$ and $\Pr[s_i = 0] = \Pr[r_i = 0] = 1 - \frac{1}{n}$.

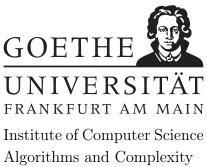
Assume that \mathcal{S} breaks ties in favor of \mathcal{R} .

- a) Apply Algorithm 14 from the lecture on this class of instances. Show your calculations for each step of the algorithm and write down the distribution of the computed decision scheme ψ .
- b) Calculate the expected reward for \mathcal{R} when using Algorithm 14 for computing a decision scheme.
- c) Find a best possible decision scheme for \mathcal{R} for this class of instances or argue why Algorithm 14 yields a best possible decision scheme here.

GOETHE UNIVERSITÄT FRANKFURT AM MAIN Institute of Computer Science

> Issued: 20.06.2023 Due: 27.06.2023, 10:00h

(2 + 1 + 1 = 4 points)



(4 + 2 + 4 = 10 points)

Exercise 8.3 Online DELEGATION

(1 + 2 + 3 = 6 points)

Consider an online variant of DELEGATION where n independent boxes arrive sequentially in a fixed order. Both the sender S and the receiver \mathcal{R} know the order of the boxes and their respective distributions $\mathcal{D}_1, \ldots, \mathcal{D}_n$ in advance, and \mathcal{R} commits to a decision scheme ψ . At arrival of box i, S looks in the box (i.e., sees prize-pair $\theta_{ij} = (s_{ij}, r_{ij})$ randomly drawn according to distribution \mathcal{D}_i) and decides immediately whether to recommend it to \mathcal{R} or not. If S lets it pass (and i < n), the next box i + 1 arrives. The process ends when S recommends a box (upon which \mathcal{R} makes the accept/reject decision according to ψ) or if S has let all n boxes pass.

The approximation factor of a decision scheme for this problem is defined with respect to the expected optimal prize that \mathcal{R} could get in an online scenario without delegation on the same instance.

a) Consider the following decision scheme ψ : Choose a single box $i^* := \arg \max_{i \in [n]} \mathbb{E}[r_{ij}]$ from which the maximum expected prize for \mathcal{R} is obtained. Always accept any recommendation from that box i^* and reject everything else, i.e., $\psi(\theta_{i^*j}) = 1$ for all $j \in m_{i^*}$ and $\psi(\theta_{ij}) = 0$ for all $i \neq i^*, j \in m_i$.

Show that this decision scheme is always n-approximative.

- b) Consider an instance of Online DELEGATION with some box i < n and prize-pair θ_{ij} . Moreover, there is another box i' > i with a prize-pair $\theta_{i'j'}$ such that $s_{i',j'} \ge n^2 \cdot s_{ij}$ and $\Pr[\theta_{i'j'}] \ge \frac{1}{n}$. Prove: For any decision scheme ψ with $\psi(\theta_{i'j'}) = 1$, it holds that S never recommends θ_{ij} .
- c) Construct a class of instances of Online DELEGATION where every decision scheme is Ω(n)-approximative. Show the correctness of your construction.
 Hint: Use insights from b).

The assignments and further information on the course are provided on our website: https://algo.cs.uni-frankfurt.de/lehre/oau/sommer23/oau23.shtml

Contacts: {schecker,wilhelmi}@em.uni-frankfurt.de.