Let M^* be a matching with maximum value. The *GreedyAlgo* starts with $M_g = \emptyset$ and iterates over

$v(M_g) \ge \frac{1}{2} \cdot v(M^*) \,.$

1

Assignment 2

Summer term 2023

Exercise 2.1 Chernoff Inequality

a) An unfair coin turns up heads with probability $\frac{4}{5}$ and tails with probability $\frac{1}{5}$. Using the Chernoff inequality, estimate the upward probability that tails turns up at least five times in a sequence of ten coin flips.

Hint: Use the definition of the inequality in the appendix of the lecture notes:

$$\Pr[X \ge (1+\delta) \cdot \mathbb{E}[X]] \le e^{-\mathbb{E}[X] \cdot \delta^2/3}.$$

b) Consider an unfair coin with probabilities $\frac{4}{5}$ and $\frac{1}{5}$. Unfortunately, you forgot whether heads or tails is more likely. Depict a method that assings the probabilities to the events with n coin tosses and an error probability of at most $e^{-\mathcal{O}(n)}$.

Exercise 2.2 NP-Hardness of offline ITEM ALLOCATION (4 points)

Show that the offline version of the ITEM ALLOCATION problem is NP-hard.

Hint: Use INDEPENDENTSET for the reduction.

Exercise 2.3 Greedy Matching

Consider a graph G = (V, E). Every edge $e \in E$ has a value $v_e \ge 0$. A matching is a set of edges $M \subseteq E$ where any node $u \in V$ is incident to not more than one edge in M, i.e., $|\{e \in M, u \in e\}| \leq 1$. The value of M is defined by $v(M) = \sum_{e \in M} v_e$.

all edges consecutively in non-ascending order of their values. An edge is added to M_g if M_g is still a matching thereafter. Show that the resulting greedy matching ${\cal M}_g$ satisfies

Prof. Dr. Martin Hoefer Conrad Schecker, Lisa Wilhelmi

Optimization and Uncertainty

(2+3=5 points)

Issued: 25.04.2023

Due: 02.05.2023, 10:00h

(5 points)

Let *GreedyAlgo* be defined as in the previous exercise. Recall that it computes a 2-approximation for the offline weighted MATCHING problem.

Consider the following variation of the algorithm for SECRETARY MATCHING (Algorithm 2) discussed in the lecture: In line 8, *GreedyAlgo* is applied to compute a matching $M^{g,t}$ of $G_t = (L_t \cup R, E_t)$ in each round $t \ge s + 1$. Consistently $M^{g,t}$ is used in the following lines (instead of $M^{*,t}$).

a) Show that Lemma 1 takes the following form given the modification described above: For every given round t = s + 1, ..., n, we have $\mathbb{E}[v(e_t)] \ge v(M^*)/(2 \cdot n)$.

Hint: Go over the proof of Lemma 1 and explain for every step which adjustments are necessary.

b) Show that the described variation of the algorithm is $2 \cdot (\mathbf{e} + o(1))$ -competitive.

Hint: Adapt the proof of Theorem 8. Use the result from a). What about Lemma 2?

Commentary: This proof can be extended to arbitrary deterministic α -approximation algorithms for offline weighted MATCHING, where $\alpha > 1$. In this way, one obtains an $\alpha \cdot (\mathbf{e} + o(1))$ -competitive algorithm for SECRETARY MATCHING.

The assignments and further information on the course are provided on our website: https://algo.cs.uni-frankfurt.de/lehre/oau/sommer23/oau23.shtml

Contacts: {schecker,wilhelmi}@em.uni-frankfurt.de.