Optimization and Uncertainty

Summer term 2021

Prof. Dr. Martin Hoefer Tim Koglin, Lisa Wilhelmi

Assignment 10

Exercise 10.1 Unknown time horizon

All no-regret algorithms presented in the lecture assumed that the time horizon T is known. Indeed, they also work for unknown time horizons by applying a slight modification: Restart the original no-regret algorithm repeatedly, where each restart marks a new phase. Phase Π_k , $k \ge 0$, consists of steps $2^k, ..., 2^{k+1} - 1$, i.e., 2^k steps in total. At the beginning of each phase, restart the original no-regret algorithm with $T' = 2^k$. This process ends when the unknown time horizon T is reached. In case the last phase is not completed, the remaining steps of the phase yield zero costs.

Assume that the original algorithm (that knows T) has a regret of at most $\alpha\sqrt{T}$ on any sequence of length T. Show that the modified algorithm has regret of at most $\frac{\sqrt{2}}{\sqrt{2}-1}\alpha\sqrt{T}$.

Remark: For RWM for EXPERTS, we would set $\alpha = 2\sqrt{\ln n}$, for Exp3 $\alpha = 3\sqrt{n \ln n}$. In both cases, we lose only a constant factor in the regret.

Exercise 10.2 Follow the Leader

Construct an instance of ONLINE CONVEX OPTIMIZATION such that the regret of Follow-the-leader (FTL) is linear in T after T > 0 rounds. Proof correctness of your answer.

Exercise 10.3 FTRL with Entropical regularization (5 points)

Recall that in the ONLINE CONVEX OPTIMIZATION problem experts are vectors \boldsymbol{v} in a convex and compact set $D \subseteq \mathbb{R}^d$. In what follows, consider $D = \{\boldsymbol{v} \in \mathbb{R}^d \mid v_i \geq 0 \text{ for all } i, \sum_{i=1}^d v_i = 1\}$. The Follow-the-regularized-leader (FTRL) algorithm picks in each round t a vector $\boldsymbol{w}^{(t)} \in D$ that minimizes the cost $R(\boldsymbol{w}^{(t)}) + \sum_{t'=1}^{t-1} c_{t'}(\boldsymbol{w}^{(t')})$. Here, consider linear cost functions, i.e., $c_{t'}(\boldsymbol{w}^{(t')}) = \sum_{i=1}^d \ell_i^{(t')} w_i^{(t')}$ where $\ell_i^{(t')}$ is the cost of expert i in round t'. For non-negative vectors $\boldsymbol{v} \in D$, Entropical regularization is defined by $R(\boldsymbol{v}) = \frac{1}{\eta} \sum_{i=1}^d v_i \ln v_i$, where $\eta > 0$ is a scaling factor.

Show that FTRL over D with Entropical regularization leads to choices of $\boldsymbol{w}^{(t)}$ exactly such that element $w_k^{(t)}$ is proportional to $\exp\left(-\eta \sum_{t'=1}^{t-1} \ell_k^{(t')}\right)$ for all $0 < k \leq d$.

Hint: Use the method of Lagrange multipliers which, in this case, works as follows: For $\mathbf{v} \in D$ to be a local optimum of some objective function $F: D \to \mathbb{R}$ subject to some condition $g: D \to \mathbb{R}$ (here, $g := \sum_{i=1}^{d} v_i = 1$), there must exists a Lagrange multiplier $\lambda \in \mathbb{R}$ such that \mathbf{v} is a stationary point of $F(\mathbf{v}) + \lambda g(\mathbf{v})$ with respect to v_i , for all *i*.

Remark: By only changing the parametrization in the RWM algorithm for EXPERTS, one can show that it actually uses exactly the same update rule.

1

GOETHE UNIVERSITÄT FRANKFURT AM MAIN Institute of Computer Science Algorithms and Complexity

Issued: 06.07.2021 Due: 13.07.2021, **10:00h**

(4 points)

(3 points)

Exercise 10.4 FTL for web search

Consider an algorithm Γ that faces the following problem motivated by web search: Suppose there are *n* users that all search for the same keyword. There are *k* different results that they might be interested in. Whenever a user arrives, Γ displays these *k* results in a chosen order. Afterwards, it is revealed to Γ which of the *k* results the user was interested in and Γ incurs a cost of *j* if this result was the *j*th result in the displayed order.

Model this problem as an ONLINE CONVEX OPTIMIZATION problem so that Γ can be realized by a Follow-the-leader (FTL) algorithm.

Exercise 10.5 σ -strong convexity

(3 points)

Prove the following statement: If regularizer R is σ -strongly convex and cost functions c_1, c_2, \ldots are convex, then $R + \sum_t c_t$ is σ -strongly convex.

The assignments and further information on the course are provided on our website: http://algo.cs.uni-frankfurt.de/lehre/oau/sommer21/oau21.shtml

Contacts for submissions and questions: {koglin,wilhelmi}@em.uni-frankfurt.de.