1

Optimization and Uncertainty

Summer term 2021

Prof. Dr. Martin Hoefer Tim Koglin, Lisa Wilhelmi

Assignment 8

Exercise 8.1 Online DELEGATION

Consider an online variant of DELEGATION where n independent boxes arrive sequentially in a fixed order. Both the sender \mathcal{S} and the receiver \mathcal{R} know the order of the boxes and their respective distributions in advance. At arrival of box i, \mathcal{S} looks in the box and decides immediately whether to recommend it to \mathcal{R} or not. If \mathcal{S} lets it pass, the next box i+1 arrives. The process ends when \mathcal{S} recommends a box (upon which \mathcal{R} makes the accept/reject decision according to decision scheme ψ) or if S has let all boxes pass.

Show that there exists an instance of online DELEGATION where any decision scheme ψ is $\Omega(n)$ competitive (compared to the expected optimal value for \mathcal{R}).

Hint: Choose distributions for the boxes that incentivize S to recommend the last possible box.

(2 + 2 + 2 points)**Exercise 8.2** Value Iteration versus Policy Iteration

Consider a Markov decision process with states $S = \{1, 2, 3\}$ and actions $A = \{a, b\}$ which is depicted below. The state transitions are deterministic. The numbers in the edge labels are the respective rewards. Assume an infinite time horizon with discount factor $\gamma = \frac{1}{2}$.

2

a, 12

a, b, 0

b, 5

3

a, 12

a) Derive an optimal Markovian policy π^* and $V^*(s)$ for all $s \in \mathcal{S}$.

1

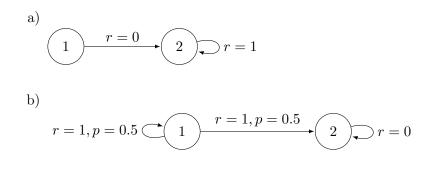
- b) Perform the first six steps of value iteration starting with initial vector $v^{(0)} = (0, 0, 0)$.
- c) Starting from the policy that always performs action a, apply policy iteration until convergence.

Exercise 8.3 Value Iteration with Caution (4 points)

Consider a more cautious version of value iteration for MDPs with infinite time horizon with state set S and action set A. It uses the operator t' which is defined by $t'(v)_s = \eta \cdot t(v)_s + (1-\eta) \cdot v_s$, for all states $s \in \mathcal{S}$, where t is the value iteration defined in the lecture and $\eta \in (0,1)$ is an arbitrary parameter.

Show that t' converges to the unique fixed point of t.

Issued: 22.06.2021 Due: 29.06.2021, 10:00h


(4 points)

GOETHE UNIVERSIT FRANKFURT AM MAIN Institute of Computer Science Algorithms and Complexity

Exercise 8.4 Gittins Index

Consider the following instances for the MARKOVIAN SINGLE-ARMED BANDIT problem with charges $\lambda \geq 0$. Let r denote the reward of a transition when action play is chosen, and p denotes the probability that the respective transition occurs (p = 1 unless stated otherwise). If **pause** is chosen, no transition occurs and the reward is zero in this round. At each iteration step, the probability that the process terminates is $\gamma \in (0, 1)$.

For each of the single-armed bandits, derive the Gittins indices of all states.

The assignments and further information on the course are provided on our website: http://algo.cs.uni-frankfurt.de/lehre/oau/sommer21/oau21.shtml

Contacts for submissions and questions: {koglin,wilhelmi}@em.uni-frankfurt.de.