1

Optimization and Uncertainty

Summer term 2021

Assignment 7

Prof. Dr. Martin Hoefer Tim Koglin, Lisa Wilhelmi

The handling time of this assignment is **two weeks**. It will be discussed in the exercise session

on 25.06.2021. There will be **no exercise session on 18.06.2021**. This is the first assignment counting for the **second part** of the lecture.

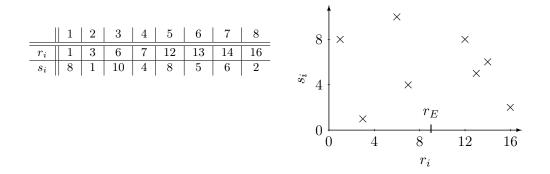
Exercise 7.1 Direct and persuasive schemes

Show Proposition 3 from the lecture notes: For every signaling scheme φ there is a direct and persuasive scheme φ' such that S obtains the same expected value in φ and φ' .

Exercise 7.2 RANDOM-ORDER SIGNALING

In RANDOM-ORDER SIGNALING, n prize-pairs are revealed to both the sender S and the receiver \mathcal{R} at the beginning. Afterwards, the prize-pairs are packed into n boxes. The boxes are closed (which makes them look identical), permuted in uniform random order, and then labeled from 1 to n. Now S can look into all boxes and then sends a signal to \mathcal{R} .

- a) Show that the optimal scheme φ^* for \mathcal{S} is symmetric.
- b) Describe an algorithm to compute φ^* in polynomial time. Give an informal argument why your algorithm yields an optimal policy indeed. *Hint: For starters, consider the geometric visualization of the example instance below. The instance consists of eight boxes with prize-pairs (marked by crosses) as shown in the table. As introduced in the lecture,* r_i *and* s_i *denote the prizes of* \mathcal{R} *and* \mathcal{S} *for box i, respectively. Here,* r_E *denotes the expected prize of* \mathcal{R} *. What are the relevant boxes for* \mathcal{S} ? *Which of these boxes is* \mathcal{R} willing to accept? What is the optimal weighting of the signals for \mathcal{S} ?
- c) Assume S could choose the best box i for her by herself (instead of sending a signal to \mathcal{R}). Show that the ratio of the expected rewards of i and φ^* for S can be up to n, and this is the worst case.



GOETHE UNIVERSITÄT FRANKFURT AM MAIN Institute of Computer Science Algorithms and Complexity

> Issued: 08.06.2021 Due: 22.06.2021, **10:00h**

> > (3 points)

(3 + 4 + 4 points)

Exercise 7.3 Online PERSUADE

(4 + 1 + 4 + 4 points)

Consider n boxes and assume that all boxes and distributions \mathcal{D}_i , i = 1, ..., n, are known. The boxes are opened in a known order. In round i, S opens box i and sends a signal to \mathcal{R} ("take box i" or "do not take box i"). If \mathcal{R} does not take the box, the process continues with the next box. Otherwise, if \mathcal{R} takes the box, the process stops. Note that when sending the signal in round i, S only knows the content of boxes 1, ..., i.

- a) For IID boxes, show that there exists a direct and persuasive $(1-1/e)^{-1}$ -competitive algorithm. Hint: Use a modification of Algorithm 12 from the lecture notes where, instead of a random box, the modified algorithm takes either the first yes-box or the last no-box (the rest remains unchanged).
- b) For independent (but not necessarily identical) boxes and the SSQ condition fulfilled with the SSQ box in round $i^* = n$, show that there exists an algorithm with constant competitive ratio.
- c) For independent (but not necessarily identical) boxes and the SSQ condition fulfilled with the SSQ box in round $i^* < n$, show that there is no algorithm with finite competitive ratio.
- d) There exists an algorithm Γ which computes the optimal signaling scheme in polynomial time for the independent case (even if the SSQ condition does not hold). It operates via backwards induction and solves n-1 linear programs. More precisely, Γ uses a LP to compute the optimal mechanism in each round i = 1, ..., n.

Depict the LP for round i. Show that it always has a feasible solution.

Hint: Suppose we have computed the optimal mechanism to be applied in rounds i + 1, ..., n. Now consider round i. Under what circumstances does S send "take box i" to \mathcal{R} ? In what cases would \mathcal{R} take the recommended box indeed? Bear in mind that the mechanism signals at most one "take it"-signal in total since the scheme is supposed to be persuasive.

The assignments and further information on the course are provided on our website: http://algo.cs.uni-frankfurt.de/lehre/oau/sommer21/oau21.shtml

Contacts for submissions and questions: {koglin,wilhelmi}@em.uni-frankfurt.de.