Optimization and Uncertainty

Summer term 2021

Prof. Dr. Martin Hoefer Tim Koglin, Lisa Wilhelmi

Assignment 3

Exercise 3.1 SECRETARY with multiple jobs

Let $k \in \mathbb{N}_{>0}$. Design an online algorithm that accepts the k best candidates in the SECRETARY problem with constant probability. Assume that the total number of candidates n is at least 2k. Depict your algorithm and show that the probability to accept the k best candidates is constant for any fixed k.

Exercise 3.2 PROPHET with multiple items

For the PROPHET problem, let p_i be the probability that v_i is optimal, where i = 1, ..., n. Furthermore, suppose that τ_i is such that $\Pr[v_i \geq \tau_i] = p_i$, i.e., the p_i^{th} percentile for v_i . For simplicity, assume that such a threshold τ_i always exists. Define

$$\tilde{v}_i(p_i) := \mathbb{E}[v_i \mid v_i \ge \tau_i]$$

as the expected value of v_i given that it lies in the top p_i^{th} percentile. We consider the following strategy to pick one item: When item i shows up, if no item has been chosen among 1, ..., i-1, reject it with probability 1/2 outright, else accept it if $v_i \geq \tau_i$.

- a) Show that the algorithm achieves a value of at least $\frac{1}{4} \cdot \mathbb{E}[v_{\max}]$.
- b) Suppose we are now allowed to choose k out of the n items. Then, the quantity of interest is given by $\mathbb{E}[\text{sum of values of best } k \text{ items}]$. Show that the algorithm achieves at least $\frac{1}{4}$ of it. *Hint:* Redefine p_i as the probability that v_i is among the top k values.
- c) If the distributions are finite, then a threshold τ_i as defined above might not exist. Can you adjust the algorithm to handle this case? Explain your answer.

Show that the offline version of the ITEM ALLOCATION problem is NP-hard.

Hint: Use INDEPENDENT SET for the reduction.

Exercise 3.3 NP-Hardness of offline ITEM ALLOCATION

Contacts for submissions and questions: {koglin,wilhelmi}@em.uni-frankfurt.de.

Issued: 04.05.2021 Due: 11.05.2021, 10:00h

(4 points)

(4 + 4 + 2 points)

(4 points)

The assignments and further information on the course are provided on our website: http://algo.cs.uni-frankfurt.de/lehre/oau/sommer2021/oau21.shtml