## **Optimization and Uncertainty**

Summer term 2021

Prof. Dr. Martin Hoefer Tim Koglin, Lisa Wilhelmi

## Assignment 2

**Exercise 2.1** Independent probabilities

A (not necessarily fair) coin shows heads with probability p and tails with probability 1-p at each toss. Assume the coin is tossed two times in a row. Determine all values  $p \in [0, 1]$  for which the two following events are independent.

- A: Both tosses yield the same outcome.
- B: The second toss yields heads.

**Exercise 2.2** Greedy Matching

Consider a graph G = (V, E). Every edge  $e \in E$  has a value  $v_e \geq 0$ . A matching is a set of edges  $M \subseteq E$  where any node  $u \in V$  is incident to not more than one edge in M, i.e.,  $|\{e \in M, u \in e\}| \leq 1$ . The value of M is defined by  $v(M) = \sum_{e \in M} v_e$ .

Let  $M^*$  be a matching with maximum value. The *GreedyAlgo* starts with  $M_g = \emptyset$  and iterates over all edges consecutively in non-ascending order of their values. An edge is added to  $M_q$  if  $M_q$  is still a matching thereafter. Show that the resulting greedy matching  $M_q$  satisfies

 $v(M_g) \ge \frac{1}{2} \cdot v(M^*) \,.$ 

**Exercise 2.3** SECRETARY MATCHING with approximation

Let *GreedyAlgo* be defined as in the previous exercise and recall that it computes a 2-approximation for the offline weighted MATCHING problem. Consider a variation of the algorithm for SECRETARY MATCHING (algorithm 2) discussed in the lecture where line 8 is replaced by applying *GreedyAlgo* to compute a matching  $M^{g,t}$  of  $G_t = (L_t \cup R, E_t)$  in each round  $t \ge s+1$ .

- a) Show that Lemma 1 takes the following form given the modification described above: For every given round t = s + 1, ..., n, we have  $\mathbb{E}[v(e_t)] \ge v(M^*)/(2 \cdot n)$ .
- b) Show that there is a  $2 \cdot (e + o(1))$ -competitive algorithm for SECRETARY MATCHING. *Hint*: You can use the result from subtask a). What about Lemma 2?

Commentary: This proof can be extended to arbitrary deterministic  $\alpha$ -approximation algorithms for offline weighted MATCHING, where  $\alpha > 1$ . In this way, one obtains an  $\alpha \cdot (e + o(1))$ -competitive algorithm for Secretary Matching.

Contacts for submissions and questions: {koglin,wilhelmi}@em.uni-frankfurt.de.



Issued: 27.04.2021 Due: 04.05.2021, **10:00h** 

(6 points)

(5+5 points)

(4 points)

The assignments and further information on the course are provided on our website: http://algo.cs.uni-frankfurt.de/lehre/oau/sommer2021/oau21.shtml