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Organizational

Email: mhoefer@cs.uni-frankfurt.de
Office: 115, R.M.S. 11-15, physical office hours postponed until further notice

Lectures:
� Tue/Thu every week, mostly writing on the board, recorded as videos
� Course is similar (but not identical) to the recent ones by Annamaria Kovacs.
� All relevant text is in this document – only figures and drawings are missing
(I make them up on the fly in the lecture)

� This document is continously expanded, updated and corrected.
� Will provide additional material on the website.

Exercises/Exams:
� Weekly exercise sheets, published on Tuesday of week i, due Tuesday of week i+ 1,
� Turn it in before 10:15h via moodle, use PDF format.
� Great to discuss solutions, but write them up in your own words
� Solutions returned and discussed in the next exercise session
� If you score x% of total number of exercise points, then

If 50 ≤ x < 75, one grading step bonus for exam (e.g., 2.0 to 1.7, or 3.7 to 3.3)
If 75 ≤ x, two grading steps bonus for exam (e.g., 2.0 to 1.3, or 3.3 to 2.7)

� Exams in February/March 2022 (oral or written depending on number of people)
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Chapter 1

Introduction and Basic Ideas

1.1 Warm-Up Example

As an elementary problem to outline the basic ideas and concepts, consider the Makespan
Scheduling problem on identical machines:

� m identical machines, n tasks
� Task i ∈ [n] has processing time pi > 0
� Assign each task i (completely) to some machine j ∈ [m]
� Load of machine j is ℓj =

∑
i on j pi

� Maximum load maxj∈[m] ℓj is called the makespan of the assignment

Goal: Assign tasks to machines to minimize the makespan

[Pic: Example Scheduling instance, assignment, makespan]

Makespan Scheduling is an offline problem, i.e., all tasks, machines and processing times
are known and available upfront. Note that Makespan Scheduling is NP-hard (why?), so
it is very unlikely that the problem can always be solved optimally in polynomial time. Still,
are there good algorithms, even though they might not always solve the problem optimally?
How can we evaluate and compare the performance of such suboptimal algorithms?

Consider Algorithm ListScheduling:
Choose any permutation π of tasks. For i = 1, . . . , n: assign task π(i) to any machine that
has curerntly smallest load ℓj.

Clearly, ListScheduling does not always comput an assignment with smallest makespan. Still,
it is not overly bad! In fact, we will show the following theorem.

Theorem 1. For any instance I of Makespan Scheduling let OPT (I) be the smallest
makespan of any assignment, and let LIST (I) be the makespan of an assignment computed
by ListScheduling. It holds that

LIST (I) ≤
(
2− 1

m

)
·OPT (I) .

7



8 CHAPTER 1. INTRODUCTION AND BASIC IDEAS

More formally, using our terminology defined below, we will say that ListScheduling obtains
a (2 − 1/m)-approximation, or that the approximation ratio of ListScheduling is at most
2 − 1/m. Intuitively, this means that, on any instance I, the makespan of the assignment
computed by ListScheduling is at most twice the optimal makespan that can be achieved for
that instance.

Proof of Theorem 1. We prove the theorem by showing lower bounds on the optimum
that are related to the output of the algorithm.

� Consider a task k that upon assigment to machine j gives the makespan load LIST (I).
� k gets assigned to a machine with currently smallest load
� Hence, ℓj ≥ LIST (I)− pk for all j ∈ [m]
� Clearly, OPT (I) ≥ LIST (I)− pk, because up to that time all machines are busy.
� Also: OPT (I) ≥ pk, because we must assign task k completely to some machine

[Pic: Schedule, pk, lower bounds]

The two lower bounds on OPT (I) relate it to LIST (I). Assembling these bounds shows
that a ratio of 2

LIST (I) ≤ OPT (I) + pk ≤ 2 ·OPT (I) . (1.1)

Looking a bit closer,
� OPT (I) must be at least the average load of all machines.
� At time LIST (I)− pk, all machines are busy, so the total load must be at least∑

i∈[m]

pi ≥ m(LIST (I)− pk) + pk .

� This implies

OPT (I) ≥ 1

m

∑
i∈[m]

pi ≥
1

m
· ((m · (LIST (I)− pk) + pk) = LIST (I)− m− 1

m
· pk

Reasoning as in (1.1) above shows

LIST (I) ≤ OPT (I) +
m− 1

m
· pk ≤

(
1 +

m− 1

m

)
·OPT (I) =

(
2− 1

m

)
·OPT (I) .

Is this the best guarantee we can have? Is the algorithm maybe even better? Is there an in-
stance, where the algorithm returns an assignment with almost twice the optimal makespan?

Theorem 2. There is an instance I and a permutation of tasks such that

LIST (I) =

(
2− 1

m

)
·OPT (I) .

Consider the following instance. There is one task with p1 = m and m(m− 1) tasks with
pi = 1. Suppose ListScheduling first assigns all small tasks. The large task 1 in the end
yields a makespan of (m− 1) +m. Instead, there is an assignment with makespan of m.
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1.2 Optimization and Approximation

The notion of approximation algorithms applies for optimization problems, in which we
evaluate a solution with an objective function, which is supposed to be either minimized
or maximized. Some examples of such problems are

Vertex Cover problem:
� Undirected graph G = (V,E)
� Subset of vertices C ⊆ V is a vertex cover if for every edge e ∈ E there is at least one
incident vertex in C

� Goal: Find a vertex cover C with minimal size |C|.
[Pic: Example Vertex Cover]

Clique problem:
� Undirected graph G = (V,E)
� Subset of vertices C ⊆ V is a clique if for every pair u, v ∈ C the edge exists {u, v} ∈ E
� Goal: Find a clique C with maximal size |C|.

[Pic: Example Clique]

Independent Set problem:
� Undirected graph G = (V,E)
� Subset of vertices S ⊆ V is an independent set if for every pair u, v ∈ S the edge does
not exist {u, v} ̸∈ E

� Goal: Find an independent set S with maximal size |S|.
[Pic: Example Independent Set]

Max-Matching problem:
� Undirected graph G = (V,E)
� Subset of edges M ⊆ E is a matching if for every pair of edges e, e′ ∈ M the edges
have no common endvertex e ∩ e′ = ∅

� Goal: Find a matching M with maximal size |M |.
[Pic: Example Matching]

Note that we are discussing optimization problems – and not decision problems (where
we just decide yes or no). Formally, decision problems are the basis for the complexity classes
P and NP. It is, however, easy to see that optimization and decision problems are closely
related. An optimization problem can be turned into a decision problem by asking whether
there is a solution with value at most or at least a given value k. For example, in the decision
problem of Clique, we are given a graph G and a value k, and the problem is to decide if
there is a clique of size at least k (rather than finding a largest clique).

Formally, we will consider problems from a class NPO of optimization problems.

Definition 1. A problem is in the class NPO if the following conditions hold. Given any
input I as an instance and L as a solution, the following can be computed/decided in time
polynomial in |I|:
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1. Does I represent an instance of the problem?
2. If yes, does L represent a feasible solution for the input instance I?
3. If yes, compute the objective function value of the solution L for the instance I.

Note that it is not necessary to have a polynomial-time algorithm to compute a solution!
Instead, for problems in NPO there is a non-deterministic polynomial-time optimization
algorithm: There is a non-deterministic Turing machine that “guesses an optimal solution”,
then verifies in polynomial time that it is a solution and computes its’ objective function
value.

Suppose we have an algorithm that always computes an optimal solution for, say, Clique.
Clearly, such an algorithm can be used to decide the decision version of Clique. However,
the decision version of Clique is NP-complete! As such, we cannot expect the algorithm to
simultaneously

1. compute an optimal solution,
2. run in polynomial time, and
3. do this for every instance of the problem.

Instead, we want a good (suboptimal) algorithm for the problem that always runs in poly-
nomial time, i.e., we here relax condition (1). Note that there is also lots of research on
relaxing (2) (e.g., exact exponential-time algorithms), or (3) (e.g., algorithms for special
cases of problems).

Our approach is to measure the worst-case ratio of the solution quality obtained by an
algorithm compared to the optimal solution.

Definition 2. Consider a minimization problem, and let I be any instance. We denote by
OPT (I) the objective function value of an optimal solution.

� For any α ≥ 1, a solution is α-approximate if it has a value of at most α ·OPT (I).

� Consider an algorithm ALG, and let ALG(I) be the objective function value of the
computed solution. For any α ≥ 1, ALG obtains an α-approximation if for every
instance I of the problem

ALG(I) ≤ α ·OPT (I) or
ALG(I)

OPT (I)
≤ α.

� Similarly, for a maximization problem a solution is α-approximate if it has a value of
at least OPT (I)/α, and ALG obtains an α-approximation if for every instance I of
the problem

ALG(I) ≥ OPT (I)/α or
OPT (I)

ALG(I)
≤ α.

We say the approximation ratio of the algorithm is at most α.
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Note that bounds on the approximation ratio of an algorithm shall hold for every instance I
of a problem. Hence, to bound the ratio from above (i.e., show that the algorithm is “good”),
we must show that the computed solution yields the guarantee in every single instance of
that problem (c.f. Theorem 1). To bound the ratio from below (i.e., show that the algorithm

is “bad”), it suffices to construct a single instance I, on which the ratio ALG(I)
OPT (I)

(or OPT (I)
ALG(I)

for maximization) attains the bound (c.f. Theorem 2).

1.3 PTAS and FPTAS

Can we improve the ratio of 2− 1/m for Makespan Scheduling? We focus on instances
with a constant number m of machines. Imagine m as a small value, e.g., m = 5.

� In ListScheduling, the task k achieving the makespan upon assignment might be a
large one – we assume above that it could be as large as OPT (I)).

� Suppose in our instance I all tasks have time pi ≤ OPT (I)/2.
� Repeating the bound in (1.1) above, the approximation ratio of ListScheduling de-
creases to at most 1.5:

LIST (I) ≤ OPT (I) + pk ≤ 1.5 ·OPT (I).

� Ok, great, but what if there are tasks with pi > OPT (I)?
� There can be at most 2 such tasks per machine, i.e., at most 2m in total.
� Consider the 2m biggest tasks. Call them big tasks (no matter how big they actually
are), and the others small.

� Note: Every small task i must have pi ≤ OPT (I)/2.

Consider the following algorithm: Find an optimal assignment of the 2m big tasks, i.e.,
one that minimizes the makespan of these tasks. Then use ListScheduling to complete the
assignment and add remaining small tasks.

Running time:
� Each big task could go to each machine ⇒ m2m possible assignments of big tasks.
� Need time O(2mn) to find the big tasks, O(m2m) for finding their optimal assignment,
and O(n logm) to complete the assignment with ListScheduling.

� Since m is a constant, overall running time is O(mn+m2m + n logm) = O(n).

Analysis of approximation ratio:
� Case 1: Machine j with only big tasks has ℓj equal to makespan.
⇒ Schedule was optimal for big tasks and has same makespan even after adding all tasks
⇒ Schedule is optimal for all tasks, approximation ratio is 1!

� Case 2: Only machines j with small task have ℓj equal to makespan.
⇒ Use analysis of ListScheduling above. Since pk < OPT (I)/2, ratio at most 1.5.

[Pic: Approximation Ratio, big task attains makespan]

How far can we push this idea? Arbitrarily far!
� Suppose we take 3m big tasks. Then the small tasks must have size pi ≤ OPT (I)/3.
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Algorithm 1: BruteForceList

1 Input: n tasks with processing times pi, m machines, parameter ε > 0

2 Determine the set T of the min(n,m · ⌈1/ε⌉) tasks with largest processing time.
3 Find an optimal assignment for the tasks in T .
4 Run ListScheduling to complete the assignment for the remaining tasks.
5 return assignment of tasks to machines

� For the ratio, we obtain a factor of 1 in case 1. In case 2, we get a ratio of 4/3:

ALG(I) ≤ OPT (I) + pk ≤ 4/3 ·OPT (I)

� Ok, lets use B ·m tasks for a big B > 0. Then small tasks have size pi ≤ OPT (I)/B.
� The ratio becomes at most (1 in case 1 and) 1 + 1/B (in case 2).
� The bigger B the better the approximation ratio. Arbitrarily good ratios are possible!

Hey, wait a minute, but what about the running time!?
� Optimal assignment of big tasks needs time O(mBm).
� This must be polynomial in n! So B better be a constant, independent of n.
� More precisely, B = c · logm n for constant c would still be fine, since then O(mBm) =
O(ncm) and c and m are constants.

We formally introduce the notion of a polynomial-time approximation scheme (PTAS).

Definition 3. A PTAS for an optimization problem is a family Aε of algorithms such that,
for every ϵ > 0, the approximation ratio of algorithm Aε is (1 + ε), and the running time of
Aε is polynomial in the input size (but not necessarily in 1/ε).

Consider Algorithm BruteForceList (Algorithm 1) for Makespan Scheduling with
constantly many machines. The algorithm is parametrized by ε > 0. Observe that with B =
⌈1/ε⌉ ≤ 1/ε+1, the algorithm exactly implements our idea above. Hence, the approximation
ratio becomes 1 + 1/B ≤ 1 + ε and the running time is bounded by O(nm/ε+mm/ε+m).

Theorem 3. Algorithm BrueForceList is a PTAS for Makespan Scheduling with con-
stantly many machines.

Some remarks:
� Running time is huge. Even with small values, say m = 10 and ε = 0.01, it becomes
astronomical and totally impractical! So what’s the point?

� PTAS’es often serve as an orientation for the complexity of a problem – is there some-
thing fundamental in the structure of the problem that excludes arbitrarily good ap-
proximation?

� Here our running time is exponential in 1/ε (ok) and m (less ok). It is not a PTAS
for plain Makespan Scheduling, without the assumption of a constant number m
of machines.
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Can we further push the limits? The ratio is already best possible, but the running time
might be improved. In a fully polynomial-time approximation scheme (FPTAS) we have
an even better dependence on 1/ε.

Definition 4. An FPTAS for an optimization problem is a family Aε of algorithms such
that, for every ϵ > 0, the approximation ratio of algorithm Aε is (1 + ε), and the running
time of Aε is polynomial in the input size and in 1/ε.

Definition 5. PTAS is the class of problems in NPO that admit a PTAS, and FPTAS ⊆
PTAS the class of problems that admit an FPTAS.

What about Makespan Scheduling?
� Above we saw Makespan Scheduling has a PTAS when we have constantly many
machines. It is not an FPTAS.

� In fact, there exists also an FPTAS when we have constantly many machines.
� There exists a PTAS for plain Makespan Scheduling with arbitrarily many ma-
chines, but no FPTAS!

Do all problems admit an FPTAS? Consider Clique.
� Suppose Clique has an FPTAS. For every given ε > 0 and every graph with n = |V |
nodes, it computes a (1 + ε)-approximation in time polynomial in n and 1/ε.

� Let’s set ε = 1/n, then the running time is polynomial in n and 1/ε = n.
� Let OPT (I) be the size of the largest clique in the graph. The FPTAS with ε = 1/n
obtains a clique of size

FPTAS(I) ≥ OPT (I)

1 + 1/n

=
n

n+ 1
·OPT (I)

= OPT (I)− OPT (I)

n+ 1

> OPT (I)− 1

� Clique sizes are integers, so FPTAS(I) = OPT (I).
� The FPTAS can be forced to compute an optimal solution in polynomial time!

[Pic: Granularity, approximation bound]

The problem is the granularity of the optimal solution. There are only n + 1 integer
values for the size of the clique. At some point, the approximation guarantee forces the
solution value to be so close to the optimum that there is only one possible value left...

We observe this condition more generally.

Theorem 4. Consider an NP-hard optimization problem, such that for every instance I
1. the objective function attains only non-negative integers, and
2. there is a polynomial q such that every solution has value at most q(|I|).

Then there is no FPTAS for this problem unless P = NP.
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Algorithm 2: Match-And-Cover

1 M ← ∅
2 Let V [M ] be the vertices incident to edges in M
3 while there is e ∈ E such that e ∩ V [M ] = ∅ do M ←M ∪ {e}
4 return V [M ]

The proof follows by repeating our arguments for Clique using ε = 1/q(|I|).

Makespan Scheduling with constant number of machines admits an FTPAS. Why is it
not covered by the previous theorem?

� Suppose all processing times are integers. Then the input size is in O
(∑

i∈[n] log pi

)
.

� The makespan lies in the interval maxi∈[n] pi, . . . ,
∑

i∈[n] pi. This can be exponential
in the input size. Theorem 4 does not apply!

1.4 The Class APX

Theorem 4 shows that many problems do not allow an FPTAS (unless P = NP). For example,
Vertex Cover, Clique, Independent Set are all problems of this type. For some
problems, we can at least show a constant-factor approximation, for which the approximation
ratio does not depend on the input size. This is the best condition if no (F)PTAS can be
achieved.

For example, consider Algorithm Match-And-Cover (Algorithm 2) for Vertex Cover.

Theorem 5. Match-And-Cover obtains a 2-approximation for Vertex Cover in polyno-
mial time.

Proof. The algorithm first computes a non-extendable matching M .
� No two matching edges e, e′ ∈M have a common endvertex.
� True initially, maintained inductively throughout the while-loop.
� Consider an optimal vertex cover C∗. Every matching edge e ∈M must be covered by
a separate vertex. Hence, |C∗| ≥ |M |.

� The cover C = V [M ] returned by the algorithm has size |C| = 2 · |M |. Thus,

|C| = 2 · |M | ≤ 2 · |C∗|.

But why is C a feasible vertex cover?
� When the while-loop terminates, no edge can be added to M without intersecting it.
� Hence, every edge e′ ∈ E \M shares at least one endvertex with some edge e ∈M
� This endvertex is in C ⇒ C covers all edges.

[Pic: Matching edges, separate vertices in C∗]

Can we approximate Vertex Cover in polynomial time to within a ratio less than 2?
Some lower bounds (without proofs):
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� 10
√
5− 21 ≈ 1.36 under standard conjectures (P ̸= NP)

� 2− ε, for every constant ε, under stronger conjectures (“unique games conjecture”)
� Improved results exist for special graph classes, e.g., bipartite graphs.

Definition 6. APX is the class of problems in NPO with the following property. There is an
efficient algorithm ALG and some constant c ≥ 1 independent of the input size, such that
ALG obtains a c-approximation.

Note that there are even problems that do not admit any constant-factor approximation,
e.g., the Clique problem.

Theorem 6. For every constant δ > 0, there is no efficient algorithm for the Clique
problem with approximation ratio n1−δ, unless P = NP.

We might return to give a proof of the theorem later in the lecture. Let us quickly note that
there is a trivial algorithm to compute a n1-approximate solution: Pick a single vertex.
It is a clique of size |C| = 1. The optimum has size |C∗| ≤ n. Hence: |C| ≥ |C∗|/n.

Definition 7. f(n)-APX is the class of problems in NPO such that there is an efficient
algorithm that obtains an O(f(n))-approximation on instances with input size n.

Similarly, we can define log-APX, poly-log-APX, or poly-APX as the classes of problems
that allow efficient algorithms with approximation ratios that are logarithmic in n, or poly-
logarithmic in n, or polynomial in n, respectively. Finally, we can define PO as the problems
from NPO that can be solved optimally in polynomial time.

Observe

PO ⊂ FPTAS ⊂ PTAS ⊂ APX ⊂ log-APX ⊂ poly-log-APX ⊂ poly-APX ⊂ NPO

[Pic: Classes and examples]
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Chapter 2

Greedy Algorithms

2.1 Priority Algorithms

Greedy algorithms make iterative, non-reversible decisions often based on partial in-
put to advance towards a feasible (hopefully near-optimal) solution.

This is a very imprecise description.

We focus on priority algorithms, a subclass of greedy algorithms with a more precise and
rigorous definition:

� Instance consists of data elements (tasks with processing times, release dates or dead-
lines; edges with weights; vertices with weights, neighborhoods; etc.)

� There is an initial ordering of all possible data elements that can occur in any
possible instance.

� A priority algorithm sequentially picks a remaining element with highest priority, makes
an irreversible decision about this element

� Priorities of remaining elements can change after a decision is made (if this happens,
we call the algorithm adaptive).

As an example, let us consider the Interval Scheduling problem:
� n tasks, each with a release date ri > 0 and a deadline di > ri > 0.
� Subset of intervals S is non-overlapping if for every pair i, j ∈ S, we have ri ≥ dj or
di ≤ rj.

� Goal: Maximize the number of non-overlapping intervals

Consider Algorithm GreedyIntervals (Algorithm 3). It is a (non-adaptive) priority al-
gorithm – intervals are considered iteratively in non-decreasing order of deadlines. The
algorithm computes an optimal solution in polynomial time.

[Pic: Example Interval Scheduling, Greedy Algorithm]

Theorem 7. GreedyIntervals solves the Interval Scheduling problem optimally in poly-
nomial time.

Proof. By induction on the number of tasks in the instance:

17
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Algorithm 3: GreedyIntervals for Interval Scheduling

1 Sort tasks in non-decreasing order of deadlines
2 S ← ∅
3 for task i in non-decreasing order of deadlines do
4 if S ∪ {i} is non-overlapping then S ← S ∪ {i}
5 return S

� Base: n = 1: Single task, Greedy picks it, optimal.
� Hypothesis: Greedy is optimal when applied to any subset of ℓ tasks, for any ℓ ≤ n−1.
� Step: Consider optimal solution S∗ for n tasks. Let task 1 be the one with earliest
deadline.

Case 1 ∈ S∗:
� Both GreedyIntervals and S∗ choose task 1.
� Remove 1 and tasks overlapping with it → remaining set T of |T | < n tasks.
� By hypothesis: Greedy computes optimal solution S∗

−1 for T .
� S∗ \ {1} is a feasible solution for T , but S∗

1 is optimal. Hence |S∗
−1| ≥ |S∗ \ {1}|.

� Thus: |S∗
−1 ∪ {1}| ≥ |S∗|. Greedy also computes an optimal solution for n tasks.

Case 1 ̸∈ S∗:
� Delete any tasks from S∗ that overlap with task 1, then add 1 to S∗

� We delete at most one task. Hence, there is optimal solution S ′ with 1 ∈ S ′.
� Apply Case 1 ∈ S∗.

[Pic: Intervals, task 1, S∗ is composition of task 1 and optimal solution for remaining tasks
T ]

As another example, consider the Min-Spanning Tree problem:
� G = (V,E) is an undirected graph, each edge e ∈ E has edge weight w(e) ∈ R
� Subset T ⊆ E of edges is
� . . . cycle-free: Induced subgraph G[T ] contains no cycle.
� . . . tree: G[T ] is connected and cycle-free
� . . . spanning tree: G[T ] contains all vertices from V .
� G not connected: Spanning forest, i.e., spanning tree for every connected component.
� We define w(S) =

∑
e∈S w(e) as the sum of edge weights, for any edge set S ⊆ E

Goal: A spanning tree (or forest) T ∗ that minimizes the sum of edge weights w(T ∗)

Recall Kruskal’s algorithm (Algorithm 4), which is another (non-adaptive) priority al-
gorithm (also note the striking similarity to GreedyIntervals)! The algorithm computes an
optimal solution in polynomial time.

[Pic: Spanning Tree, Example Kruskal Algo]

Theorem 8. Kruskal’s algorithm solves the Min-Spanning Tree problem optimally in
polynomial time.
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Algorithm 4: Kruskal Algorithm for Min-Spanning Tree

1 Sort edges in non-decreasing order of edge weight
2 T ← ∅
3 for edge e in non-decreasing order of weight do
4 if T ∪ {e} is cycle-free then T ← T ∪ {e}
5 return T

Proof. By induction on the number of vertices in the graph:
� Base: |V | = 2: At most one edge, algo picks it, optimal.
� Hypothesis: Algo is optimal when applied to any graph with n− 1 vertices.
� Step: Consider optimal solution T ∗ for G with n vertices. Let e1 be the edge with
smallest weight.

Step 1: Show that we can assume e1 ∈ T ∗

� Suppose e1 ̸∈ T ∗. Then T ∗ ∪ {e1} contains exactly one cycle C (why?)
� Adding e1 and removing any edge e′ from C results in another spanning tree T ′

� By definition w(e1) ≤ w(e′), so

w(T ′) = w(T ∗) + w(e1)− w(e′) ≤ w(T ∗)

� T ∗ is optimal, so T ′ must be another optimal solution.
� Hence, we can assume e1 ∈ T ∗.

[Pic: Add e1 to T ∗, cycle, remove costlier edge]

Step 2: Use hypothesis to finish proof
� Kruskal pics e1. No problem, there is optimal T ∗ that does so, too.
� Contract e1 = {u, v}: Merge vertices u and v into new vertex x. All edges of u and v
now incident to x (except e1, which gets removed).

� Two edges between x and some vertex v′ → keep only the one with smaller weight
� Let the resulting graph be G′. Note: G′ has n− 1 vertices.
� T ′ optimal solution for G′ ⇒ T ′ ∪ {e1} optimal solution for G (why?)
� By hypothesis, Kruskal computes optimal T ′ in G′, and T ′ ∪ {e1} in G.

[Pic: Contraction, optimal solution in contracted graph]

Our proof does not require that weights w(e) are positive – the algorithm works even for
negative weights! It also solves the Max-Spanning Tree problem: Simply multiply all
weights by −1 and solve the Min-Spanning Tree problem.

2.2 Matroids

We study greedy algorithms for subset selection problems. These selection problems gener-
alize Max-Spanning Tree.

We first define the notion of a downward-closed set system.
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Algorithm 5: Greedy for Weighted Set Systems

1 Sort elements of R in non-increasing order of element weight w(r)
2 Y ← ∅
3 for element e in non-increasing order of weight do
4 if (Y ∪ {r}) ∈ I then add Y ← Y ∪ {r}
5 return Y

� There is a ground set R of elements (e.g., edges in a graph)
� Set system (I, R): I is set of subsets of R, i.e., I ⊆ 2R, a subset of the power set of
R. I can contain some of the subsets of R, but maybe not all like the power set.

� Downward-Closed: If X ∈ I and Y ⊂ X, then Y ∈ I.

[Pic: Lattice of subsets, if a set is in I, then all subsets are in there as well]

Examples for a given graph G = (V,E):
� Let (T , E) be such that T contains all cycle-free edge sets. If X is a cycle-free edge
set, then Y ⊂ X is also cycle-free ⇒ (T , E) is downward-closed.

� Let (M, V ) be such that M contains all node set of independent sets. If X is an
independent set, then Y ⊂ X is also an independent set ⇒ (M, V ) is downward-
closed.

� Let (C, V ) be such that C contains all vertex covers. If X is a vertex cover, then Y ⊂ X
might not always be a vertex cover. This system is not downward-closed.

[Pic: Examples]

Suppose the set system is weighted: Every element r ∈ R has a weight w(r) ≥ 0.
Goal: Find a set Y ∗ ∈ I that maximizes the sum of weights w(Y ∗) of elements in Y ∗.

We focus on downward-closed set systems.
� For (T , E), we want to find a max-weight cycle-free subset of edges
→ Max-Spanning Tree, can be solved in polynomial time.

� For (M, V ), we want to find a max-weight independent node set
→ Generalizes Independent Set, (very) hard to approximate.

What is different in these set systems? Consider the Greedy algorithm (Algorithm 5).
� Run the algorithm for (M, V ). Initially, S = ∅
� We always extend Y by a vertex v of highest weight when Y ∪{v} contains no neigbors
� At some point, we might obtain a suboptimal, yet non-extendable set of nodes
� In contrast, for (T , E) this Kruskal’s algorithm – here non-extendable = optimal.

[Pic: Greedy independent set, non-extendable and suboptimal]

Definition 8. We define three properties of a downward-closed set system (I, R):
(a) Greedy Optimality: For every assignment of element weights w(r) ≥ 0, Algorithm 5

computes an optimal set Y ∗.
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(b) Extendability: For every X, Y ∈ I with |Y | < |X|, there is some element r ∈ X \ Y
such that (Y ∪ {r}) ∈ I.

(c) Maximal Cardinality: For every set Z ⊆ R, all sets X ⊆ Z that are non-extendable
w.r.t. Z have the same cardinality.

The properties seem quite different. In particular, greedy optimality seems stronger than
extendability, which in turns seems stronger than maximal cardinality. It turns out, though,
that they are completely equivalent!

Theorem 9. Greedy optimality, extendability and maximal cardinality are equivalent.

A downward-closed set system with these properties is called a matroid. As a classic exam-
ple, given a subset R of vectors in Euclidean space Rd, the subsets of linearly independent
vectors form a matroid. This gives an intuition for the nomenclature.

Definition 9. A downward-closed set system (I, R) with the properties is called a matroid.
The sets in I are called independent sets. The sets of I with largest cardinality are called
bases, and their cardinality is the rank of the matroid.

Before proving Theorem 9, we observe that (T , E) is a matroid. (T , E) is downward-closed,
so by Theorem 9, we need to show only one of the three properties. For completeness, we
show all of them:

� Greedy for (T , E) is Kruskal’s algorithm, computes an optimal cycle-free subset of
edges, for every set of weights w(e) ≥ 0 (as proved above).

� Extendability: Consider two cycle-free subsets of edges E1 and E2, where |E1| < |E2|.
� In (V,E1) we have n− |E1| components, in (V,E2) only n− |E2| < n− |E1|
⇒ There are nodes u and v connected in E2, which are not connected in E1

⇒ At least one e ∈ E2 on u-v-path that connects two components in (V,E1)
⇒ e can be added to E1 without closing a cycle.

� Maximal cardinality: Maximal subsets are spanning forests of G = (V,E). Every
spanning forest has n − d edges, with d the number of connected components in G.
This is true also in every subgraph G[Z] induced by edge set Z ⊆ E.

[Pic: Extend E1 by an edge of E2]

Proof of Theorem 9. We prove that (a) ⇒ (b) ⇒ (c) ⇒ (a)

(a) ⇒ (b): Greedy optimality ⇒ Extendability.
� Suppose Greedy computes optimal solution in (I, R) for all non-negative weights.
� Now suppose this (I, R) does not satisfy extendability:
There are X,X ′ ∈ I with |X| < |X ′| such that X ∪ {r} ̸∈ I for every r ∈ X ′ \X.

� We show: Then there exist element weights ŵ(r) such that Greedy is suboptimal
⇒ Contradiction.

� How should the weights ŵ look like? We use ε < 1/|X| and set

ŵ(r) =


1 + ε if e ∈ X

1 if e ∈ X ′ \X
0 otherwise.
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Now run Greedy on (I, R) with ŵ:
� It first adds all elements from X. This is ok – every subset of X is in I, so Greedy can
always extend it by another element from X.

� No element from X ′ \X can be added, all of them get discarded.
� Greedy might add more elements from R \X ′ of value 0.
� Terminates with a set of value |X|(1 + ε) < |X|+ 1 ≤ |X ′|, since ε < 1/|X|
� Greedy solution is suboptimal.

[Pic: X, X ′, weights]

(b) ⇒ (c): Extendability ⇒ Maximal cardinality
� Suppose in (I, R) we have extendability. Consider any X, Y ∈ I with |Y | < |X|.
� Then the smaller set Y is extendable (can be extended at least one element from X).
� Thus, all non-extendable sets X, Y ∈ I must have |X| = |Y |.

(c) ⇒ (a): Maximal cardinality ⇒ Greedy optimality
� Suppose we have the maximal cardinality property.
� For non-negative weights, there is some optimal Y ∗ ∈ I that is non-extendable.
� Greedy computes a set Y that is also non-extendable (→ Exercise)
� Suppose there are weights ŵ(r) such that Y is suboptimal.
� Number the elements Y = {r1, . . . , rd} and Y ∗ = {r∗1, . . . , r∗m} in non-increasing order
of their weights, respectively. Note that Y and Y ∗ can overlap.

� Since in sum ŵ(Y ) < ŵ(Y ∗), there must exist an index j such that ŵ(rj) < ŵ(r∗j ).
� Let k be the smallest such index, Yk−1 = {r1, . . . , rk−1} and Z = {r1, . . . , rk−1, r

∗
1, . . . , r

∗
k}.

� At some point, Greedy constructs Sk−1 and then chooses rk with weight strictly smaller
than every r∗i , for i = 1, . . . , k. Hence, none of the r∗i can be used to extend Sk−1.

� Yk−1 is non-extendable w.r.t. elements from Z.
� Let Y ∗

k = {r∗1, . . . , r∗k} ⊆ Z, which is a subset of Y ∗ and hence in I. There is a set
Y ′ ∈ I with Y ∗

k ⊆ Y ′ ⊆ Z that is non-extendable w.r.t. Z.
� We see that |Y ′| ≥ k > |Yk−1| ⇒ Contradiction.

[Pic: Elements in Y , Y ∗ in non-increasing order of weight, index k, subsets Yk−1, Y
∗
k , Z]

Graphic Matroid: The set system (T , E) of cycle-free edge sets of a graph

Matrix Matroid:
� R = set of vectors in Euclidean space Rd

� I = {X ⊆ R | X contains only linearly independent vectors}
� Downward-closed: Any subset of linearly independent vectors remains independent.
� Extendability: For any two sets of linearly independent vectors X, Y with |Y | < |X|,
there is a vector r ∈ X that can be added to Y such that Y ∪ {r} remains linearly
independent.

Uniform Matroid:
� For some integer k ≥ 0, all subsets of up to k elements: I = {X ⊆ R | |X| ≤ k}
� Downward-closed: Clear.
� Extendability: Clear :)
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As a slightly more involved example, consider the Matroid Scheduling problem:
� n tasks (ti)i=1,...,n, each task ti has a deadline di ≥ 0 and a penalty cost ci ≥ 0
� Single machine, all tasks available at time 0,
� Every task takes 1 unit of processing time to complete
� If task ti is not completed before time di, it is late
� For every late task, we have to pay penalty ci

Goal: Schedule tasks to minimize sum of penalties of late tasks

We want to show that this problem can be formulated using a matroid.
� Elements are tasks, i.e., R = {t1, . . . , tn}
� Minimize penalties of late tasks = maximize penalties of early tasks!
� For a given X ⊆ R, in a feasible schedule every task of X is finished before its deadline,
i.e., no task is getting late.

� X called feasible if there is a feasible schedule.
� Set system I = {X ⊆ R | X feasible}
� Weight of task ti is ci.

How can we implement the standard greedy algorithm? We use a simple structural lemma.

Lemma 1. X is feasible ⇔ Schedule of X in non-decreasing order of di is feasible.

Proof. It never makes sense to leave the machine idle, so we can process tasks back-to-back.
Suppose there is a feasible schedule that orders tasks of X differently.

� There are tasks violating the order: ti processed before tj, but dj < di.
� Both tasks finished before both deadlines!
� Switch positions of ti and tj, both tasks finished before both deadlines.
� Repeat argument until all tasks are in non-decreasing order of deadline.

[Pic: Task order, deadlines, switching keeps schedule feasible]

Corollary 1. Algorithm 5 can be implemented in polynomial time.

The main step is to check (Y ∪{tj}) ∈ I in polynomial time: Sort tasks in Y ∪{tj} according
to deadlines and check that no task is late.

Lemma 2. (I, R) is a matroid, so Algorithm 5 computes an optimal solution for Matroid
Scheduling.

Proof. Downward-closed: If there is a feasible schedule for X ⊆ R, then the same schedule
is also feasible for any Y ⊆ X.

Extendability: Suppose X, Y ∈ I with |Y | < |X|. Consider feasible schedules for X and Y
in non-decreasing order of deadline, respectively. Consider task ti ∈ X with largest deadline.

Case 1: ti ̸∈ Y .
� ti finished at time |X|, so di ≥ |X|. Extend schedule for Y and add ti as the last task
� Then ti finished at time |Y |+ 1 ≤ |X| ≤ di.
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Algorithm 6: Greedy for Weighted Max-Matching

1 Sort edges of E in non-increasing order of edge weight w(e)
2 M ← ∅
3 for edge e in non-increasing order of weight do
4 if (M ∪ {e}) is matching then add M ←M ∪ {e}
5 return M

� Rest of schedule feasible for Y ⇒ extended schedule feasible for Y ∪ {ti}
� Hence, ti ∈ X \ Y such that (Y ∪ {ti}) ∈ I.

Case 2: ti ∈ Y .
� Change schedule for Y and switch ti to last position. Even if one more task would be
added before ti, then ti still finished before deadline |Y |+ 1 ≤ |X| ≤ di.

� Drop ti from consideration in X and Y , repeat argument with t′i ∈ X with largest
(remaining) deadline.

After at most |Y | repetitions, a task tj with largest remaining deadline in X is found with
tj ̸∈ Y . Place tj into schedule for Y before the tasks from X ∩ Y that were moved to the
back in the repetitions. This keeps schedule the same for earlier tasks. Tasks moved to the
back still finish before their deadline. Hence, ti ∈ X \ Y such that (Y ∪ {ti}) ∈ I.

[Repeated process if ti with largest deadline from X is in Y ]

2.3 k-Matroids

Our initial example in this section is a weighted version of Max-Matching:
� Undirected Graph G = (V,E) with weight w(e) ≥ 0, for every edge e ∈ E
� Matching M ⊆ E: No “neighboring edges”, i.e., every pair e, e′ ∈M has e ∩ e′ = ∅.
� LetM = {M ⊆ E |M is a matching in G}
� Is (M, E) a matroid? Can we find good matchings greedily with Algorithm 6?

Clearly, (M, E) is a downward-closed set system.

But it is not a matroid – consider a path (e1, e2, e3) of 3 edges. There are two non-extendable
matchings, {e1, e3} and {e2}. Clearly, for w(e1) = w(e3) = 1 and w(e2) = 1.1 the greedy
algorithm computes a suboptimal solution.

[Pic: Path, matchings, greedy solution]

Still, the greedy algorithm is not overly bad!

Theorem 10. Algorithm 6 has an approximation ratio of at most 2.

Proof. Consider an optimal matching M∗. Let M be a matching computed by Greedy.
� For a moment drop all edges e ∈M ∩M∗, the ones where Greedy was “correct”
� Why didn’t Greedy pick a remaining e ∈ M∗? Because it picked some edge e1 earlier
that overlaps with e.
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� This means w(e1) ≥ w(e). We say e1 is a witness for e.
� Hence, every edge e ∈M∗ has a witness that is at least as valuable.
� Now observe that every e = {u, v} ∈ M can be the witness for at most 2 edges from
M∗ – one incident to u and one to v. Both of these are less valuable.

Overall,

w(M∗) =
∑

e∈M∩M∗

w(e) +
∑

e∈M∗\M

w(e) ≤
∑

e∈M∩M∗

w(e) +
∑

e∈M\M∗

2w(e) ≤ 2 · w(M).

[Pic: M and M∗, overlapping edges, e ∈M witness for at most 2 edges from M∗]

More fundamentally, consider any two matchings M,M ′ ∈ M. Any edge e ∈ M can forbid
the extension of M by at most two edges from M ′. Hence, if |M ′| > 2|M |, there must be
some edge e ∈ M ′ that can be added to M , i.e., where M ∪ {e} is a matching. We say
(M, E) satisfies 2-extendability.

As a consequence, the same argument shows that, for every subset Z of edges and any two
matchings M,M ′ that are non-extendable w.r.t. Z, we must have |M | ≤ 2|M ′|, i.e., they
differ by at most a factor of 2 in cardinality. We say (M, E) satisfies 2-maximal cardinality.

Definition 10. Reconsider the properties of matroids. Consider a downward-closed set sys-
tem (I, R). For any number k ≥ 1, we define
(a) Greedy k-Optimality: For every assignment of element weights w(r) ≥ 0, Algorithm 5

has an approximation ratio of at most k.
(b) k-Extendability: For every X, Y ∈ I with k·|Y | < |X|, there is some element r ∈ X\Y

such that (Y ∪ {r}) ∈ I.
(c) k-Maximal Cardinality: For every set Z ⊆ R, if two sets X,X ′ ⊆ Z are non-

extendable w.r.t. Z, then |X| ≤ k · |X ′|.

Theorem 11. Greedy k-optimality, k-extendability and k-maximal cardinality are equivalent.

Proof. Exercise.

A downward-closed set system that satisfies these properties is called a k-matroid.
Note that (M, E) discussed above for matchings is a 2-matroid.

For our next example, we consider (yet) another definining property of k-matroids.

Definition 11. For a downward-closed set system, we consider the following properties:
� exchange: For any two sets Y ⊂ X and every r ̸∈ X the following holds:
If (Y ∪ {r}) ∈ I, then there is s ∈ X \ Y such that ((X \ {s}) ∪ {r}) ∈ I.

� k-exchange: For any two sets Y ⊂ X and every r ̸∈ X the following holds:
If (Y ∪ {r}) ∈ I, then there is S ⊆ X \ Y such that |S| ≤ k and ((X \ S) ∪ {r}) ∈ I.

[Pic: Exchange r ̸∈ X for some s ∈ X \ Y when Y ∪ {r} is independent]

We show that k-exchange ⇒ k-matroid. The other direction holds only for k = 1 (every
matroid has the exchange property), but does not always hold for k > 1 (there are k-matroids
without k-exchange property).
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Theorem 12. Consider a downward-closed set system (I, R).
1. (I, R) is a matroid. =⇒ (I, R) has the exchange property.
2. (I, R) has k-exchange property. =⇒ (I, R) is a k-matroid.

Proof of 1.) Suppose (I, R) is matroid with the extendability property. Now consider Y ⊂
X ∈ I and r ̸∈ X with (Y ∪ {r}) ∈ I. We show that there is s ∈ X \ Y such that
((X \ {s}) ∪ {r}) ∈ I.

� Start with Z = Y ∪ {r}. Note that Z,X ∈ I.
� Case |Z| = |X|: X = Y ∪ {s} for some element s, so ((X \ {s}) ∪ {r}) = Z ∈ I.

√

� Case |Z| < |X|: Extend Z by some r′ ∈ X \ Z to (Z ∪ {r′}) ∈ I.
Repeat until |Z| = |X|. Then Z,X ∈ I and differ by a single element.
Previous case applies, shows exchange property.

Proof of 2.) Suppose (I, R) has the k-exchange property. We show k-extendability.
� Suppose Y,X ∈ I and k|Y | < |X|.
� To show: There is r ∈ X \ Y such that (Y ∪ {r}) ∈ I.
� If Y ⊂ X, then we are done → (Y ∪ {r}) ⊆ X and all subsets of X are in I.

So suppose Y \X ̸= ∅.
� Choose some r ∈ Y \X and let Z = X ∩ Y .
� Note that (Z ∪ {r}) ∈ I and r ̸∈ X. We apply the k-exchange property:
� There is S ⊆ (X \Z) with |S| ≤ k such that removing S from and adding r to X gives
a set X ′. X ′ is in I.

� Is Y ⊆ X ′? If not, then Y \X ′ ̸= ∅. Repeat the previous step with Y,X ′.

Consider this repeated process.
� Each repetition removes at most k elements from X \ Y and adds one from Y \X.
� After at most Y steps, we arrive at a set X ′ ∈ I with Y ⊆ X ′.
� Recall that |X| > k|Y |: There must be r ∈ X \ Y that survives in X ′.
� Y ∪ {r} ⊆ X ′, so (Y ∪ {r}) ∈ I.

This proves k-extendability.

As a second example for a k-matroid, we consider the MaxTSP problem. We are given a
complete directed graph K⃗n with a distance d(u, v) ≥ 0 for every u, v ∈ V , u ̸= v. The goal
is to find a tour that visits every vertex exactly once and maximizes the sum of distances.

[Pic: Example MaxTSP]

Consider a set system (I, R) as follows.
� R = E = {(u, v) ∈ V × V | u ̸= v}, i.e., all ordered pairs of different vertices (graph is
complete and directed)

� I = {X ⊆ R | X consists of node-disjoint directed paths, or is a tour}

[Pic: Example independent sets]

Lemma 3. (I, R) is a 3-matroid. Algorithm 5 has approximation ratio 3 for MaxTSP.
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Proof. Downward-closed: If X consists only of node-disjoint paths, removing edges splits
them into more paths. If X is a tour, removing edges splits tour into node-disjoint paths.

We show that (I, R) has the 3-exchange property.

� Consider any set X ∈ I and any edge e = (u, v) ̸∈ X.
� u and v have at most four incident edges in X
� If we remove all four edges, (u, v) becomes it’s own path. Rest stays feasible.
⇒ Adding e and removing four edges from X, we get another set from I.
⇒ (I, R) has the 4-exchange property.

� Note that we can keep an edge leaving v in X, then (u, v) becomes start of a path P .
� We remove all edges of u in X, so P is not a cycle
⇒ we get a set from I ⇒ (I, R) has the 3-exchange property.

[Pic: Path in X including u and v, remove edges of u, and incoming edge for v from X]

This gives a very simple approximation algorithm. By a more precise analysis of the structure
of the problem, one can obtain different algorithms with a better ratio., e.g., 10/7 ≈ 1.42
obtained by Paluch (2020).

Finally, let us mention a prominent class of k-matroids. They evolve by intersection of k
(1-)matroids.

Theorem 13. The intersection of k matroids is a k-matroid.

Proof. Consider the matroids (I1, R), . . . , (Ik, R) over the same ground set R. The intersec-
tion is

I = I1 ∩ . . . ∩ Ik.

We show (I, R) has the k-exchange property. Thus, by Theorem 12 it is a k-matroid.

Consider any Y ⊂ X ∈ I and an element r ̸∈ X with (Y ∪ {r}) ∈ I.
� Note that X, Y, (Y ∪ {r}) ∈ I and hence in all of the I1, . . . , Ik
� By Theorem 12 all matroids have the (1-)exchange property:
There is s1 ∈ X such that ((X \ {s1}) ∪ {r}) ∈ I1.
There is s2 ∈ X such that ((X \ {s2}) ∪ {r}) ∈ I2.
. . .
There is sk ∈ X such that ((X \ {sk}) ∪ {r}) ∈ Ik

� Consider S = {s1, . . . , sk}. For every i = 1, . . . , k, the set

Z = ((X \ S) ∪ {r}) ⊆ ((X \ {si}) ∪ {r}) ∈ Ii

and, hence, Z ∈ Ii.
� Hence, Z = ((X \ S) ∪ {r}) ∈ I, and |S| ≤ k.
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2.4 Algorithms for MinTSP

In this section, we focus on the MinTSP problem. Similar to the MaxTSP problem, we
have a complete directed graph K⃗n with n vertices. Every ordered pair of vertices u ̸= v has
non-negative distance d(u, v) ≥ 0. Here the goal is to find a tour that visits every vertex
exactly once and minimizes the sum of distances.

2.4.1 General MinTSP

We first consider the problem in full generality, i.e., we make no assumptions on the distances
between the n vertices.

Theorem 14. There is no polynomial-time algorithm with approximation ratio α(n) for
MinTSP (unless P = NP), where α(n) > 1 is an arbitrary number that can be represented
in poly(n) bits.

Proof. Consider any such algorithm with ratio α(n). We build a class of MinTSP instances,
such that the algorithm can be used to decide the NP-complete problem Hamiltonian
Cycle. Hence, if the algorithm exists, we can solve Hamiltonian Cycle in polynomial
time and P = NP.

Hamiltonian Cycle: Given a directed, unweighted graph G = (V,E), is there a Hamilto-
nian cycle, i.e., a simple cycle including all nodes of V ?

We show an NP-hardness reduction. For any instance G of Hamiltonian Cycle with n
vertices, we build an instance (n, d) of MinTSP with n vertices and the following properites:

1. The algorithm to build (n, d) from G runs in time polynomial in the input
2. The approximation algorithm for (n, d) can be used to decide if G has a Hamiltonian

cycle.

Consider graph G = (V,E) for Hamiltonian Cycle. Construct an instance for MinTSP
with n vertices and distances as follows:

� If (u, v) ∈ E, then d(u, v) = 1.
� If (u, v) ̸∈ E, then d(u, v) = n · α(n).

[Pic: Example]

1.) This construction can be done in polynomial time: We consider only O(n2) vertex pairs,
and for each pair we need to write at most poly(n) bits to represent the distance.

2.) Suppose there is an algorithm that computes a tour, which is an α(n)-approximation.
1. G has a Hamiltonian cycle ⇒ There is a tour of length n. Any tour that includes an

edge of length n · α(n) has approximation ratio at least (nα(n) + n − 1)/n > α(n).
Thus, the algorithm must return a tour of length n.

2. G has no Hamiltonian cycle ⇒ Every tour contains at least one edge of distsance
n · α(n). Hence, the algorithm must return a tour of length at least n · α(n).

The tour returned by the α(n)-approximation algorithm for MinTSP can be used to
read off the correct decision for Hamiltonian Cycle.
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Algorithm 7: MST-Tour for ∆-MinTSP

1 Input: number n of vertices, metric d

2 Consider the undirected, complete graph Kn with edge weights given by d
3 T ← optimal solution to Min-Spanning Tree in (Kn, d)

4 Duplicate all edges of T to obtain T̂

5 CT̂ ← Eulerian cycle of T̂
6 Shortcut edges of CT̂ into TSP tour C
7 return C

There is a serious gap in optimal tour length between the instances of MinTSP that are
positive (corresponding to graphs with Hamiltonian cycles) or negative (corresponding to
graphs without Hamiltonian cycle). Later in the course, we might return to this aspect more
systematically.

[Pic: Gap between positive and negative instances]

2.4.2 Metric MinTSP

The challenge in general MinTSP is that distances can have largely different values, even
in a “local” sense. Consider, e.g., a triangle with vertices u, v, w. Then we might have
d(u, v) = d(v, w) = 1, but d(u,w) = nα(n). A natural special case is the metric MinTSP
(or ∆-MinTSP), in which the distances are a metric.

Definition 12. A function d that assigns non-negative distances to pairs of elements from
a ground set V is called a metric if it satisfies, for all u, v, w ∈ V ,

1. Identity of indiscernibles: d(u, v) = 0 ⇐⇒ u = v,
2. Symmetry: d(u, v) = d(v, u), and
3. Triangle inequality: d(u,w) ≤ d(u, v) + d(v, w).

[Pic: Example triangle inequality]

Our first two approximation algorithms build an Eulerian cycle and shortcut it to a TSP
tour. An Eulerian cycle of a graph G is a traversal of all edges of the graph, i.e., a path
that starts and ends in the same vertex and goes through each edge exactly once. Recall the
following basic result:

Theorem 15. An undirected, connected graph G has an Eulerian cycle. ⇐⇒ Every vertex
in G has even degree.

[Pic: Example Eulerian cycle]

Consider Algorithm MST-Tour (Algorithm 7). The algorithm uses a minimum spanning
tree T in the graph Kn with weights given by distances.

� Symmetric distances, so consider Kn as undirected graph. Distances are edge weights.
� Duplicating all edges yields a graph T̂ with even degree for every vertex.
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Algorithm 8: Christofides-Serdyukov Algorithm for ∆-MinTSP

1 Input: number n of vertices, metric d

2 Consider the undirected, complete graph Kn with edge weights given by d
3 T ← optimal solution to Min-Spanning Tree in (Kn, d)
4 U ← set of vertices in T with odd degree
5 M ← minimum-distance matching of vertices of U

6 T̂ ← T ∪M

7 CT̂ ← Eulerian cycle of T̂
8 Shortcut edges of CT̂ into TSP tour C
9 return C

� The Eulerian cycle CT̂ of T̂ can be obtained using a trivial greedy algorithm.
� Consider edge (u, v) in CT̂ leading to a vertex v that has been visited in the cycle
before. We shortcut this and the next edge (v, w) of the cycle into an edge (u,w). The
total distance of the tour can only decrease, since d(u,w) ≤ d(u, v) + d(v, w) by the
triangle inequality.

� Applying this adjustment repeatedly, we obtain a tour C that visits every vertex once
(rather than every edge). The total distance is at most that of the Eulerian cycle.

[Pic: Example run of algorithm, shortcutting step]

Theorem 16. Algorithm 7 has approximation ratio 2 for ∆-MinTSP.

Proof. Consider an optimal TSP tour C∗. Let d(C∗) =
∑

(u,v)∈C∗ d(u, v) be its total distance.

Let d(T ) =
∑

(u,v)∈T d(u, v) be the total distance of T . First, we see that d(C∗) ≥ d(T ):

� Suppose from C∗ we remove the edge (u, v) with smallest distance
� Denote the remaining set of edges by Cu,v.
� Note: Cu,v is a spanning tree of Kn. T is a minimum spanning tree of Kn.
� Hence, d(C∗) ≥ d(Cu,v) ≥ d(T )

Now since we duplicate edges, we have 2d(T ) = d(T̂ ) = d(CT̂ ). Moreover, by shortcutting
CT̂ via the triangle inequality, we observed above that d(CT̂ ) ≥ d(C). Overall, this implies

d(C) ≤ d(CT̂ ) = 2 · d(T ) ≤ 2 · d(C∗).

The ratio of 2 emerges from duplicating all edges of T . The Christofides-Serdyukov
Algorithm (Algorithm 8) is more careful in contructing a graph with an Eulerian cycle.
We only add edges for the vertices U that have odd degee in T . This improves the ratio
significantly.

Theorem 17. Algorithm 8 has approximation ratio 1.5 for ∆-MinTSP.
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Proof. The proof is very similar to the proof of Theorem 16. The main difference is that M
increases the total distance of d(T̂ ) by at most 0.5 · d(C∗):

� Consider C∗
U , a tour obtained by “shortcutting” C∗ between the vertices of U

� Sum of vertex degrees in T is even.
⇒ T must contain an even number of nodes with odd degree
⇒ |U | is even.

� C∗
U has an even number of edges

� Split C∗
U into two perfect matchings of U , let MU be the one with smaller distance

� MU has total distance d(MU) ≤ 0.5 · d(C∗
U) ≤ 0.5 · d(C∗)

� M is minimum-distance matching of U , so d(M) ≤ d(MU).

[Pic: Tour C∗
U by shortcutting C∗, split into two matchings]

Combining this insight with the arguments above, we see that

d(C) ≤ d(CT̂ ) = d(T ) + d(M) ≤ d(C∗) + d(MU) ≤ 1.5 · d(C∗)

The running time of the algorithm is dominated by finding a min-distance matchingM among
vertices of U . It can be as high as O(n3). The algorithm was found by independently by
Christofides and Serdyukov in 1976 and has been the algorithm with the best approximation
ratio for metric TSP for more than 40 years. Very recently, Karlin, Klein, and Oveis Gharan
(2021) obtained an algorithm with improved ratio – it beats 1.5 by a constant of ca. 10−36.

There are other algorithms for ∆-MinTSP that iteratively build a solution. The Nearest-
Insertion heuristic adds in each round a single vertex to an existing subtour: Start with the
pair of vertices with smallest distance as subtour. Add in each round a vertex with smallest
distance to any vertex in the current subtour, and insert it in a way to increase the total
distance as little as possible.

Similarly, the Farthest-Insertion heuristic adds in each round a single vertex with largest
distance to any vertex in the current subtour. It inserts the vertex in a way to increase the
total distance as little as possible.

Nearest-Insertion has approximation ratio at most 2, Farthest-Insertion a ratio between 6.5
and 1 + log n.

Finally, many special cases of ∆-MinTSP allow algorithms with better approximation ratios:
� Graph TSP, i.e., d(u, v) is the shortest path distance in an underlying unweighted,
undirected graph G = (V,E)
→ can be approximated with ratio 1.4 (Sebö, Vygen, 2012)

� Planar Graph TSP, i.e., the underlying graph G is planar
→ there is a PTAS (Grigni, Koutsoupias, Papadimitriou, 1995)

� Euclidean TSP, i.e., vertices are points in Rk, and distances are measured via the direct
connections d(u, v) =

√
(u1 − v1)2 + . . .+ (uk − vk)2

→ there is a PTAS (Arora, 1996)
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Algorithm 9: Three Greedy Algorithms for Bin Packing

1 Input: n sizes g1, . . . , gn ∈ [0, 1]

2 open new bin b = 1

/* Next-Fit: */

3 for i = 1, . . . , n do
4 if i fits into bin b then place i into b
5 else open new bin b+ 1, place i into b+ 1, set b← b+ 1

6 return b

/* First-Fit: */

7 for i = 1, . . . , n do
8 for bin j = 1, . . . , b do place item i into bin j if it fits
9 if i does not fit in any open bin then

10 open new empty bin b+ 1, place i into b+ 1, set b← b+ 1

11 return b

/* First-Fit-Decreasing: */

12 Sort items in non-increasing order of size: g1 ≥ g2 ≥ . . . ≥ gn
13 Run First-Fit algorithm with items sorted in this order.

2.5 Bin Packing

Bin Packing is a fundamental optimization problem:
� n items, each item has size gi ∈ [0, 1].
� Up to n bins available.
� Size constraint: Each bin can fit items of total size at most 1
� Place all items into bins without violating the size constraints

Goal: Minimize the number of bins that are used

An instance is represented by g1, . . . , gn. Let b∗ be the smallest number of bins that are
required to pack all items. The following algorithms implement different variants of a natural
greedy approach (see Algorithm 9). They offer worst-case performance guarantees as follows:

1. Next-Fit → opens at most b ≤ 2b∗ + 1 bins
2. First-Fit → opens at most b ≤ 1.7b∗ + 2 bins
3. First-Fit-Decreasing → opens at most b ≤ 3

2
· b∗ + 1 bins

(in fact, even b ≤ 11
9
· b∗ + 2 can be shown)

Let us first observe the guarantee for NextFit. Suppose b denotes the number of bins opened
by the algorithm, and G =

∑n
i=1 gi.

� We partition the b bins into pairs of consecutively opened bins.
� For every pair, the sum of sizes in the bins is at least 1 (otherwise, the later bin would
not have been opened)



2.5. BIN PACKING 33

� This implies for even b that b∗ ≥ G ≥ b/2.
� Similar, when b is odd: b∗ ≥ G ≥ (b− 1)/2.

Hence b∗ ≥ (b− 1)/2, which implies b ≤ 2b∗ + 1.

Next-Fit and First-Fit are online algorithms, they can be applied even if the items arrive
sequentially over time and must be placed before seeing the next item(s). Instead, First-Fit-
Decreasing is an offline algorithm.

Theorem 18. First-Fit-Decreasing (FFD) opens a number of b bins with b ≤ 3
2
b∗ + 1.

Proof. Partition the items into four classes:
1. A = {i | gi > 2/3}, large items
2. B = {i | 2/3 ≥ gi > 1/2}, medium-high items
3. C = {i | 1/2 ≥ gi > 1/3}, medium-low items
4. D = {i | gi ≤ 1/3}, small items

Note that FFD first assigns all items from A, then from B, then from C, finally from D.

[Pic: Classes]

Consider the subinstance of items A ∪B ∪ C and a run of FFD:
� FFD opens a bin for each item in A (called A-bin), any assignment must do this
� FFD opens a bin for each item in B (called B-bin), any assignment must do this
� At most one item from C can be in a B-bin
� FFD maximizes the number of items from C placed in B-bins (→ Exercise)
� Remaining C-items are placed in pairs into bins (except maybe last one).

Hence, when FFD has completed the assignment of A, B, and C, it made an optimal solution
for these items.

[Pic: A-bins, B-bins, items from C in B-bins]

Now consider the remaining items from D assigned in the last phase.
� If FFD opens no new bin, then it has an optimal assignment of all tasks, b ≤ b∗.
� Suppose FFD opens at least one new bins.
� Then all bins must have load at least 2/3, except maybe the last one.
� This implies: b∗ ≥ G ≥ (b− 1) · 2/3
� Solving for b we get b ≤ 3

2
b∗ + 1

The guarantee consists of a multiplicative factor of 3/2 and an additive offset. Let us first
see whether we can obtain a better guarantee without the offset.

Theorem 19. For any ε > 0, there is no polynomial-time algorithm with approximation
ratio 3

2
− ε for Bin Packing, unless P = NP.

Proof. Consider an instance of the NP-complete decision problem Partition:
� n integer numbers a1, . . . , an. We define A =

∑n
i=1 ai and [n] = {1, . . . , n}.

� We need to decide if there are sets B1 ⊆ {1, . . . , n} and B2 = [n] \B1 such that∑
i∈B1

ai = A/2 =
∑
i∈B2

ai.
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Algorithm 10: APTAS for Bin Packing

1 Input: Set [n] of items with sizes g1, . . . , gn ∈ [0, 1], parameter ε ∈ (0, 1]

2 S ← {i | gi ≤ ε}, B ← [n] \ S // sets of small and big items

// Partition [0, 1] into at most k = ⌈1/ε2⌉ intervals

3 Sort items in non-increasing order of size.
4 Assign first ⌊ε2 · n⌋ items to the first class
5 Repeat with next ⌊ε2 · n⌋ items and second class, and so on, until all items assigned.

// Solve auxiliary instance

6 Auxiliary Size: Round up each item size to the largest one in its class
7 By enumeration, find optimal bin packing for B when every item has auxiliary size

// Add small items

8 Extend this packing by assigning the items of S using First-Fit
9 return bin packing of all items

Given an instance of Partition we construct an instance of Bin Packing with n items
by setting gi = 2ai/A. Then G =

∑
i gi = 2. Clearly,

� The optimum packing needs at least two bins.
� Partition instance is true
⇐⇒ Sets B1 and B2 describe numbers that sum to A/2, respectively
⇐⇒ Items from B1 in the Bin Packing instance have total size G/2 = 1, same for
B2.
⇐⇒ Bin Packing instance has b∗ = 2.

This shows that finding an optimal solution for Bin Packing in this class of instances is
NP-hard. What about a (3/2− ε)-approximation algorithm?

Suppose we have such an algorithm and run it on these instances. If the b∗ = 2, the algorithm
must return a solution with at most (3/2 − ε) · 2 < 3 bins, so with 2 bins! Thus, with a
(3/2−ε)-approximation algorithm forBin Packing, we can correctly decidePartition.

The hardness reduction applies only to instances with small optima. Note that for b∗ = 2,
an approximation ratio of 3/2 allows 3/2 · b∗ = 3 = b∗ + 1 bins, i.e., it is equivalent to an
additive offset of 1. In contrast to problems like Makespan Scheduling, the hardness of
the Bin Packing problem does not scale to larger instances.

We examine if we can obtain a better guarantee when we accept an additive offset of 1.
Every suboptimal solution for Bin Packing needs at least b∗ + 1 bins. It is still unknown
if there is a polynomial-time algorithm that always returns a solution with b∗ +1 bins. Here
we give a slightly weaker result: A so-called asymptotic PTAS (APTAS), a PTAS with
an additive constant in the approximation guarantee (Algorithm 10)

Theorem 20. For every constant ε > 0, Algorithm 10 is an APTAS for Bin Packing. It
computes a solution in time polynomial in the input size (but exponential in 1/ε) that opens
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only b bins with
b ≤ (1 + 2ε) · b∗ + 1.

The APTAS divides the items into relevant (set B) and not-so-relevant (set S). For relevant
items, it partitions the domain [0, 1] into classes of roughly similar sizes – it uses k ≈ 1/ε2

intervals, each of which contains at most n/k ≈ ε2 · n items of B. If several items have the
same size, they count as separate items. It then uses the auxiliary size for each item – it
rounds every item size to the largest one of its class.

[Pic: Interval division]

The following step is the main one: We enumerate and optimize over all bin packings for
the same instance, where every item size is replaced by its auxiliary size. How long does this
take?

Lemma 4. There are at most (
d+ n

d

)
∈ O(nd)

many bin packings with auxiliary item sizes that open a different numbers of bins, where

d =

(
⌈1/ε2⌉+ ⌊1/ε⌋
⌈1/ε2⌉

)
∈ O

((
1

ε

)1/ε2
)

.

Proof. We use that there is only a constant number of different auxiliary item sizes.
� There are only k = ⌈1/ε2⌉ possible auxiliary item sizes, one for each class.
� All items have auxiliary size at least ε.
� Hence, each bin can contain at most r = ⌊1/ε⌋ many items.
� A bin type is a vector (a1, . . . , ak), where ai indicates the number of items from class
i in the bin. How many different types of bins can we have?

Let us bound the number of different types of bins.
� A bin type is a vector of k non-negative integer numbers that sum to at most r, i.e.,
we count the number of vectors (a1, . . . , ak), such that each ai ∈ N and

∑k
i=1 ai ≤ r.

� Given a type, let t =
∑k

i=1 ai. We represent the type in unary coding with k − 1 + t
bits: Exactly t 1’s, with a 0 separating classes (e.g., (4,2,3) = 11110110111)

� The number of such vectors is bounded by
(
k−1+t
k−1

)
– the possible choices for the k − 1

0’s in the vector of k − 1 + t bits
� In total the number of different types of bins is at most

d =
r∑

t=0

(
k − 1 + t

k − 1

)
=

k−1+r∑
T=k−1

(
T

k − 1

)
=

(
k + r

k

)
=

(
⌈1/ε2⌉+ ⌊1/ε⌋
⌈1/ε2⌉

)
.

where we use k and r as defined above.
� Since ε is a constant, d is a constant!

How can we count the number of possible bin packings?
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� We have at most d many bin types.
� A bin packing can be seen as a vector (b1, . . . , bd), where bi indicates the number of
bins of type i in the packing.

� We count1 the number of possible bin packings as above: The number of vectors with
d non-negative integers such that they sum up to n.

� By repeating the analysis above, this results in at most(
d+ n

d

)
many bin packings that open a different number of bins.

When we enumerate the number of different bin packings with auxiliary item sizes, this
dominates the running time of the algorithm, but it remains polynomial in n for constant ε.
How can we bound the approximation factor?

Lemma 5. The number b of bins opened by Algorithm 10 is b ≤ (1 + 2ε) · b∗ + 1.

Proof. Case 1: B = [n] and S = ∅, no items with size at most ε.
� Let b∗ be the number of bins opened in the optimal packing. Since every item has size
at least ε, we see that

b∗ ≥
n∑

i=1

gi ≥ ε · n

� Consider an optimal packing for items with auxiliary sizes, where we exclude the items
of the largest class

� This packing uses at most b∗ items:
Take optimal packing with original sizes. Replace ⌊ε2 · n⌋ items of largest class with
⌊ε2 · n⌋ rounded up items of second-largest class, and so on. Packing remains feasible
with b∗ bins, since replacement decreases every item size. Optimal packing uses at
most b∗ bins.

� Every item from the largest class opens at most one more bin.
� Hence, the algorithm opens b bins with

b ≤ b∗ + ⌊ε2 · n⌋ ≤ b∗ + ⌊ε · b∗⌋ ≤ (1 + ε) · b∗

Case 2: S ̸= ∅.
� Let b∗B be the number of bins opened in the optimal packing of only the items in B
� Just proved in Case 1: APTAS determines a packing of items in B with at most
(1 + ε)b∗B ≤ (1 + ε)b∗ bins.

� The items in S are then assigned using FirstFit.

1In fact, this is an upper bound on the number of possible bin packings, since there are additional
constraints coming from the number of auxiliary sizes of items that are not taken into account here. For
example, there might not be n bins of the same type j possible, since the instance might not have enough
items to fill all n bins with the items required according to type j.
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� If no additional bin is opened, previous bound applies, b ≤ (1 + ε)b∗.
� Otherwise, every bin – except maybe the last one – has total size of at least 1− ε.
� Hence, the total number b of open bins satisfies

b∗ ≥
n∑

i=1

gi ≥ (b− 1) · (1− ε),

which implies

b ≤ 1

1− ε
· b∗ + 1 ≤ (1 + 2ε) · b∗ + 1.

2.6 Maximum Coverage

The Maximum Coverage problem is a basic problem with many applications. It is very
closely related to the Set Cover problem that we will analyze in Section 5.3.3.

� Set E = {1, . . . ,m} of elements, integer k ≤ n
� Set system S = {S1, . . . , Sn} ⊆ 2E, i.e., a family of n subsets of E.
� Collection C ⊆ [n] of subsets covers the elements E(C) =

⋃
i∈C Si ⊆ E

� Number of elements covered by C is denoted by cov(C) = |E(C)|
� Goal: Find a maximum cover, i.e., C with at most |C| ≤ k sets that maximizes cov(C)

Example: Elements E = {a, . . . , j}, sets
� S1 = {c, d, e, h}
� S2 = {a}
� S3 = {a, c, e, g, i}
� S4 = {b, d, j}
� S5 = {b, c, d, e, f}
� S6 = {b, f, j}

For k = 1, maximum covers are C = {3} and C ′ = {5} with cov(C) = cov(C ′) = 5.
For k = 2, a maximum cover is C = {3, 5} with cov(C) = 8. Other maximum covers for
k = 2 are C ′ = {3, 6} or C ′′ = {3, 4}.

Variants and generalizations of theMaximum Coverage problems have lots of applications
in various fields like viral marketing or machine learning. Here is a (toy) example application:
Suppose the elements E are potential customers of a product. There are n influencers, and
each comes with a subset Si ⊂ E of followers. A company has a budget to hire up to k ≤ n
of the influencers to advertise its product on their channel. If an influencer advertises the
product, then all her followers will buy it (but each follower buys at most once). Which k
influencers should the company hire to maximize the total number of customers that buy
the product?

We apply a Greedy algorithm (Algorithm 11). In each iteration t, it picks a set Sjt that
maximizes cov(C ∪ {jt})− cov(C) = |Sjt \ E(C)|, the (marginal) increase in the number of
covered elements.
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Algorithm 11: Greedy Algorithm for Maximum Coverage

1 Input: Set S of n subsets, parameter k ≤ n

2 C1 ← ∅
3 for t = 1, . . . , k do

// maximize marginal increase in number of covered elements

4 jt ← argmaxi∈[n]\C cov(C ∪ {i})− cov(C)
5 Ct+1 ← Ct ∪ {jt}
6 return Ck+1

Algorithm 12: Maximize Submodular Function s.t. Cardinality Constraint

1 Input: Set [n] of n options, submodular function f , parameter k ≤ n

2 C1 ← ∅
3 for t = 1, . . . , k do

// maximize marginal increase in objective function f
4 jt ← argmaxi∈[n]\C f(C ∪ {i})− f(C)
5 Ct+1 ← Ct ∪ {jt}
6 return Ck+1

How good is this algorithm? We will answer this question for a general selection problem
with decreasing marginal returns.

Definition 13. Given a set [n] of n options, a set function f : 2[n] → R is called
� normalized if

f(∅) = 0

� monotone if
f(A) ≤ f(B) for each A ⊆ B ⊆ [n]

� submodular if we have decreasing marginal returns

f(B ∪ {j})− f(B) ≤ f(A ∪ {j})− f(A) for each A ⊆ B ⊆ [n], j ∈ [n]

Submodular is sometimes defined by the alternative property

f(A ∪B) ≤ f(A) + f(B)− f(A ∩B) for each A,B ⊆ [n].

Both definitions are equivalent (Exercise).

Note that the objective function cov : 2[n] → N of the Maximum Coverage problem

cov(C) = |E(C)| =

∣∣∣∣∣⋃
i∈C

Si

∣∣∣∣∣
satisfies all three properties. Normalized and monotone are trivial. For submodular, suppose
we add a set Sj to a cover B, and consider the marginal increase in the number of covered
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elements. Now compare this to the marginal increase when adding Sj to a cover A, for
some subset A ⊆ B. Clearly, A covers only a subset of the elements that B covers. Hence,
E(A) ⊆ E(B), and the marginal increase is:

cov(B ∪ {j})− cov(B) = |E(B ∪ {j})| − |E(B)|
= |Sj \ E(B)|
≤ |Sj \ E(A)| A ⊆ B ⇒ E(A) ⊆ E(B)

= |E(A ∪ {j})| − |E(A)|
= cov(A ∪ {j})− cov(A)

[Pic: cov is submodular]

Consider the Constrained Submodular Maximization problem: Choose a subset C ⊆
[n] to maximize a given normalized, monotone, and submodular set function f(C) subject
to a cardinality constraint |C| ≤ k. This is a generalization of the Maximum Coverage
problem. We apply a greedy algorithm (Algorithm 12) to solve this problem.

Theorem 21. Algorithm 12 has an approximation ratio of e/(e − 1) ≈ 1.58. It runs in
polynomial time if f(C) can be computed in polynomial time for all C ⊆ [n].

This ratio is essentially best possible, even in the special case of Maximum Coverage:
If there is a polynomial-time algorithm that computes an (e/(e− 1)− ε)-approximation for
some constant ε > 0, then P = NP.

The statement about the running time is trivial, so we only show the approximation ratio.
We start with a technical lemma.

Lemma 6. Suppose C∗ is an optimal solution, i.e., a subset of k options that maximizes
f(C∗). In every iteration t = 1, . . . , k, the increase in solution value is at least

f(Ct+1)− f(Ct) ≥
1

k
· (f(C∗)− f(Ct)).

Proof. Consider C∗ \ Ct = {j∗1 , j∗2 , . . . , j∗p} the options in C∗ that are not in Ct. Then

f(C∗)− f(Ct)

≤ f(Ct ∪ C∗)− f(Ct) (by monotonicity)

= f(Ct ∪ {j∗1})− f(Ct) + f(Ct ∪ {j∗2 , j∗1})− f(Ct ∪ {j∗1})
+ . . .

+ f(Ct ∪ {j∗p , j∗p−1, . . . , j
∗
1}︸ ︷︷ ︸

=Ct∪C∗

)− f(Ct ∪ {j∗p−1, . . . , j
∗
1}) (telescoping sum)

≤
p∑

i=1

f(Ct ∪ {j∗i })− f(Ct) (by submodularity)

≤ p · (f(Ct ∪ {jt})− f(Ct)) (by greedy choice)
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≤ k · (f(Ct ∪ {jt})− f(Ct)) (since p = |C∗ \ Ct| ≤ k)

= k · (f(Ct+1)− f(Ct)) (since Ct+1 = Ct ∪ {jt})

[Pic: C∗ \ Ct, telescoping sum, submodularity for individual terms w.r.t. Ct]

We now proceed to show the main result by induction.

Proof of Theorem 21. For every t = 1, . . . , k, we show that at the end of iteration t

f(Ct+1) ≥

(
1−

(
1− 1

k

)t
)
· f(C∗).

� Base: We have C1 = ∅ and f(C1) = 0. Using Lemma 6,

f(C2) = f(C2)− f(C1) ≥
1

k
· (f(C∗)− f(C1)) =

1

k
· f(C∗) =

(
1−

(
1− 1

k

))
· f(C∗)

� Hypothesis: Statement holds for some Ct with 2 ≤ t ≤ k + 1.
� Step: Consider Ct+1:

f(Ct+1) ≥ f(Ct) +
1

k
· (f(C∗)− f(Ct)) (by Lemma 6)

=
1

k
· f(C∗) +

(
1− 1

k

)
· f(Ct)

≥ 1

k
· f(C∗) +

(
1− 1

k

)
·

(
1−

(
1− 1

k

)t−1
)
· f(C∗) (by hypothesis)

=

(
1

k
+ 1− 1

k
−
(
1− 1

k

)
·
(
1− 1

k

)t−1
)
· f(C∗)

=

(
1−

(
1− 1

k

)t
)
· f(C∗)

This completes the induction. In the end,

f(Ck+1) ≥

(
1−

(
1− 1

k

)k
)
· f(C∗) ≥

(
1− 1

e

)
· f(C∗),

i.e., the approximation ratio is at most 1/(1− 1/e) = e/(e− 1) ≈ 1.58.

2.7 Shortest Common Superstring

2.7.1 Greedy Conjecture

A string is a sequence of letters from a finite alphabet Σ. The Shortest Common Su-
perstring problem is given as follows.
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� Set U with n strings over some finite alphabet Σ
� A superstring of U is a single string, where each string of U occurs as a substring.
� W.l.o.g. no string u ∈ U is substring of another u′ ∈ U – otherwise simply drop u.
� Goal: Find a superstring S that has smallest total length |S|

Example Application: Shotgun Sequencing of DNA
� Sequential pass over DNA for sequencing is too costly and time-consuming
� Instead: Produce many fragments (substrings) of a DNA in parallel
� Fragments are almost disjoint
� How to recover the common DNA sequence from the fragments?
� Shortest superstring often solves the problem

Some definitions:
� overlap(u, v) ∈ N is length of longest suffix of u that is a prefix of v
� prefix(u, v) is the prefix string of u not contained in v
� Hence: |prefix(u, v)| = |u| − overlap(u, v)
� We also define overlap(u, u) via the longest “non-trivial” overlap of u with itself – the
longest overlap with length strictly smaller than |u|. So 0 ≤ overlap(u, u) < |u|.

Superstrings and orderings:
� A bijection π : {1, . . . , n} → U defines an ordering of the strings in U .
� Let (π(1), . . . , π(n)) be the strings in the order of π.
� π induces a shortest superstring S(π)

S(π) = prefix(π(1), π(2))⊕ prefix(π(2), π(3))⊕ · · · ⊕ prefix(π(n− 1), π(n))⊕ π(n)

where we use ⊕ for concatenation of two strings.
[Pic: prefix and overlap, ordering of strings induces a superstring]

These definitions imply several direct observations.
1. If S is a shortest superstring of U , then there is an ordering π such that S = S(π).
2. The length |S(π)| is given by

|S(π)| =
∑
u∈U

|u| −
n−1∑
i=1

overlap(π(i), π(i+ 1))

To see observation 1., suppose S is a shortest superstring of U . Place every u ∈ U at
the position where it first occurs in S. Every letter of S must be covered by some u ∈ U ,
otherwise we can shorten S. Hence, S is a concatenation of prefixes from strings in U in some
ordering. The overlap of subsequent strings is always as large as possible, since otherwise
we could further shorten the string.

[Pic: String S, strings from U , overlap]

To see observation 2., note that

|S(π)| =
n−1∑
i=1

|prefix(π(i), π(i+ 1))|+ |π(n)|
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Algorithm 13: Greedy Superstring

1 Input: Set U of n strings

2 R← U
3 while |R| > 1 do
4 find two strings u ̸= v from R with maximal overlap(u, v)
5 w ← prefix(u, v)⊕ v
6 Replace u and v by w: R← ((R \ {u, v}) ∪ {w})
7 return single remaining S ∈ R

=
n−1∑
i=1

(|π(i)| − overlap(π(i), π(i+ 1))) + |π(n)|

=
n∑

i=1

|π(i)| −
n−1∑
i=1

overlap(π(i), π(i+ 1))) + |π(n)|

Finding a shortest superstring is equivalent to finding an ordering of strings in U that
maximizes the sum of overlaps over all pairs of consecutive strings. First, consider the
simple greedy algorithm (Algorithm 13). It merges two strings that have the largest overlap
until a single string remains.

Seminal result in the literature (Blum et al, 1991):

Theorem 22. Algorithm 13 has approximation ratio 4 for Shortest Common Super-
string.

Recent updates (Englert et al, Nov 2021):
� Greedy has approximation ratio at most (13 +

√
57)/6 < 3.425.

� Poly-time algorithm with best-known ratio of (37 +
√
57)/18 < 2.475

Major open conjecture: The approximation ratio of greedy is actually 2.

Instead of the greedy algorithm, we here study a different algorithm related to cycle covers.

2.7.2 Cycle Covers

Based on U , we construct a directed overlap graph G:
� Nodes are strings. A directed edge in E for every pair u, v ∈ U (also for u = v)
� Complete directed graph over the strings, even with a loop for every string
� (u, v) ∈ E has edge weight overlap(u, v)

[Pic: Example graph, overlap is edge weight]

Short superstrings are orderings are Hamiltonian paths:
� In a Hamiltonian path of G each node visited exactly once
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Algorithm 14: Max-Weight Cycle Decomposition

1 Input: Set U of n strings

2 Construct overlap graph G = (U,E), compute overlap(u, v) for all u, v ∈ U
3 E ′ ← ∅
4 repeat
5 Pick (u, v) ∈ E with largest weight overlap(u, v)
6 E ′ ← E ′ ∪ {(u, v)}
7 E ← E \ {(u,w) ∈ E | w ∈ U}
8 E ← E \ {(w, v) ∈ E | w ∈ U}
9 until E = ∅

10 return E ′

� Ordering of strings is a Hamiltonian path, and vice versa.
� Total edge weight of the path is total overlap of strings
� Max-weight path has maximal overlap, hence, is best ordering, and shortest superstring
� Shortest superstring corresponds to a (max-weight) Hamiltonian path

In general, finding a max-weight directed Hamiltonian path is NP-hard. We here apply a
weaker solution: a directed cycle decomposition of maximum weight.

� Directed cycle decomposition of G = (U,E) is a subgraph (U,E ′)
� In (U,E ′) every node has exactly one outgoing and one incoming edge
� Hence, every component of (U,E ′) is a directed cycle or a single node with self-loop.
� Weight of cycle cover is total edge weight

∑
(u,v)∈E′ overlap(u, v)

[Pic: Example Cycle Decomposition]

We proceed as follows:
1. Compute a max-weight cycle decomposition
2. Show how to build a superstring from a cycle decomposition
3. Bound the resulting approximation ratio

Computing a Max-Weight Cycle Decomposition. We use the greedy algorithm pre-
sented in Algorithm 14. Greedy computes an optimal decomposition for weights given by
overlap(u, v) of strings u, v ∈ U . It is not necessarily optimal for general edge weights (a
more advanced method based on matchings can be applied).

Theorem 23. Algorithm 14 returns a cycle decomposition of maximal weight for every
overlap graph.

Towards the proof of the result, we first show the following structural lemma.

Lemma 7. Consider any four strings u, v, u∗, v∗. If

overlap(u, v) ≥ overlap(u, v∗) and overlap(u, v) ≥ overlap(u∗, v)

then
overlap(u, v) + overlap(u∗, v∗) ≥ overlap(u∗, v) + overlap(u, v∗).
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Algorithm 15: Construct Superstring

1 Input: Set U of n strings

2 E ′ ← cycle decomposition returned by Algorithm 14
3 for each cycle Ck in E ′ do
4 Pick arbitrary string of Ck as u1

5 Construct string Sk by merging all strings along the cycle from u1

6 S ←
⊕

Ck
Sk

7 return S

Proof. Exercise.

Proof of Theorem 23. By induction over n = |U |.
Base: n = 1, single self-loop, trivial.

Step: Suppose the algorithm is optimal for n nodes/strings. Consider n+ 1 nodes/strings.
� Suppose e1 = (u, v) is edge with largest overlap(u, v) (u = v possible)
� Suppose E∗ is a max-weight cycle decomposition. If E∗ includes e1, great!
� Otherwise, there is are edges (u, v∗), (u∗, v) ∈ E∗ (leaving u and coming into v). Again
u = u∗, v = v∗, etc. possible.

� Since e1 has largest weight, we can apply the lemma to see

overlap(u, v) + overlap(u∗, v∗) ≥ overlap(u∗, v) + overlap(u, v∗).

� Replace (u, v∗) and (u∗, v) by (u, v) and (u∗, v∗) in E∗

� New cycle decomposition, total weight can only increase→ max-weight decomposition
→ There is a max-weight cycle decomposition that includes e1.

The algorithm makes no mistake when it picks e1 in the first step. Consider the next steps.
� Merge nodes u and v into a supernode.
� Keep incoming edges of u and outgoing edges of v (delete the others).
� This is equivalent to merging the strings u and v to a common superstring.
� It creates an overlap graph G′ with n nodes.
� Cycle decomposition of G′ → With e1 becomes cycle decomposition of G
� Cycle decomposition of G with e1 → cycle decomposition of G′.
� Hence, use greedy to compute an optimal cycle decomposition E ′ of G′ (by induction)
� E ′ ∪ {e1} is optimal cycle decomposition of G

[Pic: Node merge, correspondence of decompositions in G′ and G]

Superstring from a Cycle Decomposition. Let us turn to the second step. Suppose
we have computed a max-weight cycle decomposition. Given a cycle decomposition, we
define for each cycle Ck a superstring Sk that contains the strings from the cycle. We then
concatenate the superstrings Sk of all cycles Ck. (Algorithm 15)

Consider a single cycle C with strings u1, . . . , um (numbered consecutively along the cycle)
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� We pick an arbitrary string from Ck and define it as u1

� Then construct two strings along the cycle starting from u1:
Sk results from merging strings u1, . . . , um in that order
vk is the part of Sk from u1 until the second start u1

� vk is a prefix of Sk ⊕ u1, so
|Sk| ≤ |vk|+ |u1|

� Possibly |vk| < |ui| for some ui. In fact, even |vk| < |ui| for all 1 ≤ i ≤ m is possible.

[Pic: Strings, overlap, construction of Sk and vk]

Consider the infinite concatenation of v∞k = vk ⊕ vk ⊕ vk ⊕ . . .
� v∞k contains all strings u1, . . . , um (even the ones with |ui| > |vk|)
� We say vk is a cycle cover of strings u1, . . . , um. More generally, the collection of all
{vk | Ck cycle in E ′} is a cycle cover of U , since every string of U occurs in the cyclic
extension of at least one vk.

� If another string of Ck is chosen as u1, then vk gets shifted cyclically.
� To obtain Sk, we can concatenate vk until it contains all ui and then break off the
remaining letters.

Approximation Ratio. To bound the approximation ratio, we use the insights on vk and
Sk for each cycle, along with the property that E ′ is a max-weight cycle decomposition.

Theorem 24. Algorithm 15 has approximation ratio 4 for the Shortest Common Su-
perstring problem.

Proof. Consider the cycle cover vk of cycle Ck with strings u1, . . . , um.
� vk is given by

prefix(u1, u2)⊕ prefix(u2, u3)⊕ · · · ⊕ prefix(um−1, um)⊕ prefix(um, u1)

with a length of

|vk| =
m∑
i=1

|prefix(ui, ui+1)| (where we interpret m+ 1 = 1 mod m)

=
m∑
i=1

|ui| − overlap(ui, ui+1) (indices mod m)

� Clearly, by summing over all cycles C1, . . . , Cℓ in the decomposition E ′

ℓ∑
k=1

|vk| =
∑
u∈U

|u| −
∑

(u,v)∈E′

overlap(u, v)

=
∑
u∈U

|u| −max weight of cycle decomposition
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� We observed above that an optimal superstring S∗ = S(π∗) corresponds to a max-
weight Hamiltonian path in the overlap graph, and

|S∗| =
∑
u∈U

|u| −max weight of Hamiltonian path

� Add an edge to Hamiltonian path, turns into a Hamiltonian cycle, weight increases.
Hamiltonian cycle is a cycle decomposition.

� Hence, the max-weight cycle decomposition only has more weight than the max-weight
Hamiltonian path:

max weight of Hamiltonian path ≤ max weight of cycle decomposition

� As a consequence:

|S∗| ≥
ℓ∑

k=1

|vk|

Hence, the concatenation of vk yields a lower bound on the optimal length. Let us now upper
bound the lengths of strings S1, . . . , Sℓ whose concatenation is returned by our algorithm.

� First consider a special case: U has non-periodic strings.
� Non-periodic: In every cycle Ck there is a string uk

i with |vk| > |uk
i |

� For the length
|Sk| ≤ |vk|+ |uk

i | ≤ 2 · |vk|

and hence
∑ℓ

k=1 |Sk| ≤ 2 ·
∑ℓ

k=1 |vk| ≤ 2 · |S∗|
� This even implies an approximation factor of 2.

� For arbitrary strings, let uk
1 be the first string from cycle Ck, for k = 1, . . . , ℓ

� Consider the set U1 = {u1
1, u

2
1, . . . , u

ℓ
1} ⊆ U of “first” strings

� Let S1 be a shortest superstring of U1, and renumber the strings from U1 in the order
they appear in S1

� We can lower bound the length of the optimal string S∗ by

|S∗| ≥ |S1| (since U1 ⊆ U)

=
ℓ∑

k=1

|uk
1| −

ℓ−1∑
k=1

overlap(uk
1, u

k+1
1 ) (numbered by ordering in S1)

≥
ℓ∑

k=1

|uk
1| −

ℓ−1∑
k=1

(|vk|+ |vk+1|) (by Lemma 8, see below)

≥
ℓ∑

k=1

|uk
1| −

ℓ∑
k=1

2|vk|.

Therefore
ℓ∑

k=1

|uk
1| ≤ |S∗|+ 2

ℓ−1∑
k=1

|vk| ,
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and the approximation ratio is bounded by

|S| ≤
ℓ∑

k=1

|Sk| ≤
ℓ∑

k=1

|vk|+ |uk
1| ≤ |S∗|+ 3

ℓ∑
k=1

|vk| ≤ 4|S∗|

The proof uses an “Overlap-Lemma”. Since our algorithm simply concatenates all Sk

(without merge), it should be guaranteed that these strings cannot be merged to a large
degree in S∗. This is the consequence of the following lemma, which we simply state here
without proof.

Lemma 8. If uk
1 has cycle cover vk and uk+1

1 has cycle cover vk+1 (and vk is not a cyclic
shift of vk+1), then

overlap(uk
1, u

k+1
1 ) ≤ |vk|+ |vk+1|.



48 CHAPTER 2. GREEDY ALGORITHMS



Chapter 3

Dynamic Programming

In an abstract sense, a dynamic programming algorithm splits a problem P into subproblems
P1, . . . , Pk. Based on the solutions for the subproblems, it can construct a solution for
problem P . To obtain a solution for the subproblems it usually applies the split operation
recursively, thereby creating further (hopefully smaller and easier) subproblems down the
line. The challenge is to manange

� Dependencies: Ensure that subproblems created during the recursive split do not create
cyclic requirements for their solutions

� Numbers: The number of subproblems that must be solved to complete the recursive
application remains polynomial in the input size.

3.1 Weighted Interval Scheduling

We consider a weighted version of the Interval Scheduling problem:
� n tasks, each with a release date ri > 0 and a deadline di > ri > 0.
� Subset of intervals S is non-overlapping if for every pair i, j ∈ S, we have ri ≥ dj or
di ≤ rj.

� Weighted version: Each task has a weight (= profit) wi ≥ 0.
� Goal: Find a set of non-overlapping intervals that maximizes the sum of task weights.

Consider the dynamic programming algorithm in Algorithm 16. It constructs 2n subprob-
lems, one for every value ri and di of release dates and deadlines. We assume w.l.o.g. that all
times are distinct. Let t1, . . . , t2n be the sequence of all release dates and deadlines, sorted
in non-decreasing order.

� Subproblem: For a time tj ∈ T , we consider the optimal weight of a solution if we
exclude all tasks i with deadline di > tj.

� W (tj) is the optimal weight in subproblem tj
� Base case: Clearly, W (t1) = 0, since we exclude all tasks.
� How can we solve the subproblem for tj using the result for smaller subproblems?

We distinguish two cases depending on whether tj is a release date or a deadline.
� tj = rk, release date of some task k. Between tj and tj−1 there is no deadline, subprob-
lem the same as for tj−1.

49
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Algorithm 16: Dynamic Program for Weighted Interval Scheduling

1 Input: Set [n] of tasks with ri, di and wi for each i ∈ [n]

// Assume w.l.o.g. that all ri and di are distinct

2 T ← {ri, di | i ∈ [n]}, the set of all release dates and deadlines
3 Consider t1 ≤ t2 ≤ . . . ≤ t2n all times in T sorted in non-decreasing order

4 Set W (t1)← 0
5 for j = 2, 3, . . . , 2n do
6 if tj release date then W (tj)← W (tj−1)
7 else
8 k ← task corresponding to deadline tj = dk
9 W (tj) = max{W (tj−1),W (rk) + wi}

10 return W (t2n)

� Now suppose tj = dk, deadline of some task k:
� Suppose k ∈ S∗

j , an optimal solution to subproblem tj. Then S∗
j = S∗

i ∪ {k}, where S∗
i

is an optimal solution for subproblem ti = rk < tj.
� Otherwise j ̸∈ S∗

j for every optimal solution to subproblem tj. Then S∗
i = S∗

i−1.

[Pic: Intervals, Subproblem, Decomposition of optimal solution if time is a deadline]

Theorem 25. Algorithm 16 computes the total weight of an optimal solution for any instance
of Weighted Interval Scheduling.

Note that the running time is dominated by the sorting step, which in general can take
Θ(n log n) time. The for-loop of the dynamic program runs in time O(n).

3.2 Knapsack

The Knapsack problem is a very central packing problem:
� Set [n] of n items, each item i has size gi ≥ 0 and weight/profit wi ≥ 0
� Knapsack has size bound of G. W.l.o.g. gi ≤ G for every i ∈ [n]
� A subset S ⊆ [n] is feasible if it fits into the knapsack:

∑
i∈S gi ≤ G

� Goal: Find a feasible set that maximizes the sum of weights.

Since the basic computational model underlying our considerations is the standard Turing
machine, standard normalization tricks allow us to assume that all numbers are given by
non-negative integers. In fact, the following argument even work with real-valued sizes,
but we exploit that weights are integers.

Theorem 26. Algorithm 17 is an FPTAS for Knapsack that runs in time O(n3/ε)

We define W =
∑n

i=1wi as the sum of all weights. We first describe a dynamic program
for Knapsack. Consider the subproblems:
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Algorithm 17: FPTAS for Knapsack

1 Input: Set [n] of tasks with si, wi for each i ∈ [n], parameter ε > 0

2 wmax ← maxi∈[n] wi

3 s← ε · wmax/n
4 ŵi = ⌊wi/s⌋ // auxiliary weights

// Dynamic program with auxiliary weights

5 Ŵ =
∑

i∈[n] ŵi

6 G(0, 0)← 0 and G(0, x)←∞ for 1 ≤ x ≤ Ŵ
7 for i = 1, . . . , n do
8 for W ′ = 1, . . . ,W do
9 G(i,W ′)← min(G(i− 1,W ′), gi +G(i− 1,W ′ − ŵi))

// Backwards run to determine items in packing

10 W ∗ ← max{W ′ | G(n,W ′) ≤ G}
11 S ← ∅
12 for i = n, . . . , 1 do
13 if G(i,W ∗) = gi +G(i− 1,W ∗ − ŵi)) then
14 S ← (S ∪ i)
15 W ∗ ← W ∗ − ŵi

16 return S

� Subproblem: G(i,W ′) is the smallest sum of sizes of any subset S ⊂ {1, . . . , i} that
has total weight

∑
j∈S wj = W ′.

� We require a total weight W ′ and consider all subsets of the first i items that have
exactly this weight. We want to know the smallest sum of sizes of any of those subsets.

� If there is no subset of {1, . . . , i} with total weight W ′, then set G(i,W ′) =∞.
� We consider subproblems G(i,W ′) for all 1 ≤ i ≤ n and 0 ≤ W ′ ≤ W .

Base case and recursion:

� Base Cases: G(0, 0) = 0 and G(0, x) =
∑n

j=1 gj + 1 for all 1 ≤ x ≤ W,x ̸= 0.
� Recursion: For subproblem G(i,W ′), is there a subset of smallest size that includes i?
� If yes, then G(i,W ∗) = gi +G(i− 1,W ′ −wi), i.e., it combines task i with a smallest-
weight subset of {1, . . . , i− 1} that yields total weight exactly W ′ − wi.

� If W ′ − wi < 0, then this is impossible to achieve, and then G(i− 1,W ′ − wi) =∞.
� If no subset includes i, then the best set is a subset of {1, . . . , i − 1}, i.e., G(i,W ′) =
G(i− 1,W ′).

� Overall, the better option yields the correct result:

G(i,W ′) = min{G(i− 1,W ′), gi +G(i− 1,W ′ − wi)}

[Pic: Table representation of subproblems G(i,W ′), Recursion example]
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Note that the table can be filled starting with i = 1 and W = 1, and for each i going from
W ′ = 1 to W . This takes time O(nW ).

Lemma 9. There is a dynamic program to solve Knapsack in time O(nW ).

This is not polynomial time, since the numbers in the input are represented in logarithmic
encoding, i.e., the numbers wi need only O (

∑n
i=1 log2(wi)) bits in the input – so W might

be exponential in the input size. The running time of the algorithm is pseudopolynomial,
it is polynomial if every number wi gets represented in unary coding by wi 1’s.

Definition 14. In the unary input of an instance, every numerical value is represented
in unary encoding. The running time of an algorithm is called pseudopolynomial if it is
bounded by a polynomial in the size of the unary input.

To move from an exact solution in pseudopolynomial time to an approximate solution in
polynomial time, we “make the weights small”.

[Pic: Auxiliary weights]

Proof of Theorem 26. Given some ε > 0, we round each value wi to the next multiple of a
suitably chosen s > 1. This yields auxiliary weights ŵi = ⌊wi/s⌋. Using these weights, we
apply the dynamic program.

With foresight, we choose s = εwmax/n. What is the impact on the running time?
� Sum of all auxiliary weights decreases to at most ⌊W/s⌋.
� By Lemma 9, we solve the problem with auxiliary weights optimally in time O(nW/s).
� Note that

n ·W
s

=
n2 ·W
εwmax

≤ n2 · n · wmax

εwmax

=
n3

ε

which proves the running time of O(n3/ε).

What about the approximation guarantee? Suppose S is a packing computed by the algo-
rithm and S∗ an optimal solution. Then∑

i∈S∗

wi =
∑
i∈S∗

s · wi

s
≤
∑
i∈S∗

s ·
(
⌊wi

s
⌋+ 1

)
≤ ns+ s ·

∑
i∈S∗

ŵi

≤ ns+ s ·
∑
i∈S

ŵi (since S optimal for ŵi)

≤ ns+ s ·
∑
i∈S

wi

s
= εwmax +

∑
i∈S

wi (by definition of s)

Using wmax ≥
∑

i∈S∗ wi, we see∑
i∈S

wi ≥
∑
i∈S∗

wi − εwmax ≥ (1− ε)
∑
i∈S∗

wi

This implies that the approximation ratio is at most 1/(1− ε) ≤ 1 + 2ε.
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3.3 Vertex Cover on Trees

In this section, we discuss a general approach for dynamic programming on tree graphs. The
approach can be used to solve a large variety of optimization problems that are NP-hard
on general graphs. We explain the idea in the context of the Vertex Cover problem. In
particular, we consider a more general version with vertex costs.

� G = (V,E) is a tree, i.e., an undirected, connected graph without cycles
� Each vertex v ∈ V has a weight/cost wv ≥ 0.
� Vertex cover C ⊆ V : For each edge e ∈ E at least one incident vertex in C
� Goal: Find a cheapest vertex cover, i.e., one with smallest sum of costs

We construct a dynamic program.
� Root the tree in an arbitrary node r. Now each node (except r) has a parent node
� Nodes without children nodes are leaves
� We denote by Tv the subtree of v and all descendants of v
� A subproblem for every node/subtree. Construct solution “bottom-up”:
� Start at the leaves. Given solutions for all children, compose solution for parent

At each node, we compute two values:

W 0(v) = cost of cheapest vertex cover of Tv that does not include v

W 1(v) = cost of cheapest vertex cover of Tv that includes v

The dynamic program proceeds as follows:
� If v is a leaf, then W 0(v) = 0 and W 1(v) = wv

� Now suppose v has children v1, . . . , vk.
� If v is not in the cheapest cover, all edges to the children must be covered by the
children. Hence, they must all be in the cover:

W 0(v) =
k∑

i=1

W 1(vi)

� If v is in the cheapest cover, the children do not have to be. Hence, for every child we
pick whatever is cheaper for the subtree rooted at the child

W 1(v) = wv +
k∑

i=1

min(W 0(vi),W
1(vi))

[Pic: v out → every child must be in, otherwise may or may not (whatever better for cost)]

The cheapest cost of a vertex cover is given by min(W 0(r),W 1(r)). To construct the cover,
we proceed top-down.

� If the minimum is W 0(r), then r stays out and all children of r must be in the cover.
� Hence, r forces all children into the cover.
� Generally, a node forced by the parent must join the cover.
� An unforced node is free to join or stay out, depending what yields the cheaper cost.
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� If a node stays out, it forces all its children.
� This way we obtain an optimal vertex cover.

Theorem 27. The Weighted Vertex Cover problem on trees can be solved optimally in
polynomial time.

3.4 Euclidean MinTSP

We discuss a PTAS for MinTSP in Euclidean space:
� n cities, every city i is a point pi ∈ Rℓ

� Distances are the Euclidean distances d(pi, pj) =
√∑ℓ

k=1(pik − pjk)2

� For simplicity we restrict to the plane with dimension ℓ = 2

Preparation. We “round” all city locations to obtain integer coordinates. Place a grid
over the plane with some stepsize δ for horizontal and vertical steps.

� Integer coordinates represent multiples of δ
� Move every city to integer coordinates.
� δ too small → grid too fine, too many integers to consider, running time very high
� δ too large → grid too coarse, movement to integer coordinates heavily distorts the
instance and deteriorates approximation quality

We achieve the right trade-off for the δ using moving, scaling, and rounding:
Moving: Place origin of the coordinate system s.t. smallest horizontal and vertical coordi-

nate of any city is 0, resp.
Scaling: Scale δ s.t. largest horizontal or vertical coordinate of any city is n2.
Rounding: Round down every coordinate of every city to the nearest integer:

(p′i1, p
′
i2) = (⌊pi1/δ⌋, ⌊pi2/δ⌋) for all citites i ∈ [n]

Real coordinates and distances are all in terms of δ – but we will ignore the common
factor of δ from now on, since it appears in all subsequent arguments and doesn’t change
things. After our preparation, all cities have integer coordinates in the square [0, n2]× [0, n2].

[Pic: Preparation of instance]

What is the impact of this adjustment on our PTAS?
� Running time: O(n2) coordinates in each dimension → at most O(n4) integer points
in the grid (ok!)

� Approximation: For one dimension, there is one city at coordinate 0 and one at n2

→ Every tour for the (real) instance has distance at least 2n2

� Rounding changes every pairwise distance of two cities by at most ±2
√
2

� Consider any tour C with total length d′(C) for the rounded and d(C) for real locations.
� Then |d(C)− d′(C)| ≤ n · 2

√
2 = O(1/n) · d(C∗)

� PTAS will compute C with d′(C) ≤ (1 + ε) · d′(C∗) in the rounded instance
→ For real distances, this tour satisfies d(C) ≤ (1 + ε+O(1/n)) · d(C∗).
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PTAS in the Rounded Instance (Idea) We outline a dynamic programming approach
to compute a near-optimal tour for the rounded instance.

� Recursively partition the square Q = [0, n2]× [0, n2] into smaller squares
� Each recursion step partitions the current square in to four smaller squares
� A partition yields four border lines along all inner borders of the smaller squares
� Length of the border of a square on depth i is n2/2i.
� Stop recursion when square has 0 or 1 city inside. Happens at the latest when length
of border is < 1.

� The recursion tree is a quad-tree – each square has either 0 or 4 children squares.
� How many recursive calls to go from border length n2 to border length < 1?
→ Tree has depth at most ⌈log2 n2⌉ < 1 + 2 log2 n .

[Pic: Recursive partition of square, border lines of different depth]

We create a near-optimal tour by combining “partial tours” inside the squares.
� For a parent square, we combine partial tours computed for children squares.
� Towards this, we define “doors” or “portals” on the inner border lines of the square.
� A door allows the partial tour to enter/exit the square from/into neighboring squares.
� We require that partial tours leave a square only at a door. How many doors?
Too many → too many potential meeting points, high running time
Too little → restriction to doors creates distortion and bad approximation.

� For border line of a square place m equidistant doors.
� m = ⌈(3 log2 n)/γ⌉ for every border, no matter how long the side length
� Distance between doors of a square of depth i is n2/(m · 2i)

[Pic: Doors along the inner borders of squares]

Besides connecting cities inside the square, we must also allow partial tours to “cross
through” the square when connecting cities of other squares far away, or to connect one
or more cities to other cities far away. These options are captured by assembling partial
tours at the doors.

A visiting scheme T̃ for a square is a set of pairs of the doors on the border of this square:

T̃ = {{T1, T
′
1}, {T2, T

′
2}, . . . , {Tr, T

′
r}}

For the square, if a partial tour with the visiting scheme T̃ is used to build our final tour,
then the tour enters the square via Ti and then leaves it via Ti′ (or vice versa), for each
i = 1, . . . , r.

Using this intuition, we can build a near-optimal tour bottom-up in the quad-tree. Our
algorithm computes an optimal legal tour, i.e., a shortest tour that crosses borders of
squares only at doors.

Base Cases. Consider a leaf square Q in the tree with at most 1 city. First, suppose Q
has no city. We define LQ(T̃ ) as the total length of segments resulting from all {Ti, T

′
i}:

LQ(T̃ ) =
r∑

i=1

d(Ti, T
′
i )



56 CHAPTER 3. DYNAMIC PROGRAMMING

Second, if Q has one city c, then for every visiting scheme T̃ , we include a “detour” to c on
one connection {Ti, Ti′} with the smallest overhead in length:

LQ(T̃ ) = min
k=1,...,r

(
d(Tk, c) + d(c, T ′

k) +
r∑

i=1,j ̸=k

d(Ti, T
′
i )

)

[Pic: Example schemes and tours for squares with 0 or 1 city]

Recursion. For parent square Q with children Q1, . . . , Q4 and visiting scheme T̃ of Q:
� Consider all combinations of visiting schemes for the children squares (T̃1, T̃2, T̃3, T̃4)
� We call a combination compatible with each other and with T̃ if all doors of these
visiting schemes fit to each other, and a feasible partial tour for visiting scheme T̃ is
created.

� In a compatible combination, there are no “loose ends”, where partial connections
break off, no “subtours” that create to a closed cycle (unless Q is the origin of the
quad-tree), no “splits” where a tour splits into two branches, etc. pp.

� A compatible combination is evaluated by the total length of the segments
� For T̃ we only keep track of a best compatible combination:

LQ(T̃ ) = min
(T̃1,T̃2,T̃3,T̃4) compatible

LQ1(T̃1) + LQ2(T̃2) + LQ3(T̃3) + LQ4(T̃4)

Running Time. The main property to bound the running time is a bounded number of
visiting schemes. For each given square, there are at most 2O(m) many visiting schemes that
must be considered (explanation below). This implies:

Lemma 10. The recursion can be implemented in time polynomial in n.

Proof. Suppose we only need to test 2O(m) visiting schemes for each square.
� Running time for a given square Q: Enumerate and test all (2O(m))5 = 2O(m) = nO(1/γ)

possibilities of combinations of visiting schemes for Q and the four children. Checking
compatibility is possible in polynomial time (negligible here).

� How many squares/nodes in the quad-tree? Tree has depth O(log n). Each city con-
tained in a hierarchical sequence of squares that compose a path to the root. Thus,
at most O(n log n) squares with cities. Each city can cause at most O(log n) squares
without cities.

Total running time: O(n log n) · 2O(m) = nO(1/γ).

[Pic: O(log n) empty squares caused by two neighboring cities]

Now let us bound the number of visiting schemes for a square that must be considered to
compute an optimal legal tour.

Proposition 1. There is a shortest legal tour that
1. visits every door at most twice, and
2. never crosses (and only meets) in a door.
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Proof. If a tour comes to a door more than twice, it is easy to see that we shorten the tour.
Hence, the shortest tour visits a door at most twice. Now suppose it crosses itself upon its
visit at a door. Then by rerouting the parts, we can avoid a crossing (and merely cause a
“meeting” in a point).

[Pic: Multiple visits, crossing becomes meeting]

These observations allow to significantly reduce the number of visiting schemes that must
be considered to compute an optimal legal tour.

Corollary 2. We can restrict attention to visiting schemes T̃ such that
� the direct connections between two pairs {Ti, T

′
i} and {Tj, T

′
j} in T̃ do not cross, and

� every door appears at most in two pairs of T̃ .

To count the schemes T̃ with these properties, walk around the outer rim of the square
starting in a specific door. In the beginning, all pairs of T̃ are closed. For each door T , write

� letter “(” for each closed pair from T̃ with T , mark that pair as open
� letter “)” for each open pair from T̃ with T , mark that pair as done.

This creates a string for each scheme T̃ . This string has length at most 8m (at most 4m
doors, each in at most 2 pairs), and it is a feasible expression of brackets (since connections
of door pairs are non-crossing).

Theorem 28. The number of feasible expressions of k brackets is the k-th Catalan number

Ck =
1

k + 1

(
2k

k

)
= 2O(k) .

This provides an intuition why we need to consider at most 2O(m) visiting schemes.

Approximation Ratio. We show: There is some legal tour of length at most (1+ε)·d(C∗).
Since our algorithm computes the optimal legal tour, our tour is only shorter and also fulfills
the bound.

� Take an optimal tour C∗ in the instance. Prolong segments of C∗ with detours:
Move every crossing of a border and C∗ to the closest door.

� The detour to the door for one crossing with border of depth i is at most 2n2/(2im)
� Along borders of smaller depth i, we have longer detours to the doors – but there are
also less borders of this type.

� If the cities are placed badly, we cross the borders for small i very frequently.

[Pic: Example, many crossings of a border with long detours]

In a sense, the bad constellations mean we were “unlucky” with our grid – it was placed
badly w.r.t. the optimal tour C∗. We randomly perturb the position of our initial grid.
Then it is unlikely (in a probabilistic sense) that we experience large detours.

� A grid of length 2L, where L is the smallest power of 2 larger than n2

� Lower left corner (a, b) is put randomly at an integer grid point in [−L, 0]× [−L, 0]
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� Segment of length d(x, y) from C∗ can cross at most d(x, y) horizontal and d(x, y)
vertical border lines

� Optimal tour has at most 2 · d(C∗) crossings
� Due to random positioning, each line has probability 2i/(2L) < 2i/(2n2) to become
the (union of) borders of squares of depth i

[Pics: Random positioning of grid, crossings of a border, border lines of depth i]

For the optimal tour C∗, it is clear where the tour crosses the integer grid lines. Consider
one fixed such crossing.

� Grid line is a border line of some depth. The depth level is random.
� Hence, the number of doors on the line and the detour to the closest door is random.
� For each depth level i: Line has level i with probability 2i/(2L). In that case, the
detour is at most 2n2/(2im)

Expected detour length for the given crosssing:

E[ detour of C∗ for single crossing ] ≤
1+2 log2 n∑

i=1

2i

2L
· 2n

2

2im
=

1+2 log2 n∑
i=1

2n2

2Lm

≤ (1 + 2 log2 n) ·
1

m
≤ (1 + 2 log2 n) · γ

3 log2 n
≤ γ

By linearity of expectation:

E[ detour of C∗ for all crossings ] ≤ γ · E[ number of crossings ] ≤ γ · 2d(C∗)

Lemma 11. The expected detour of an optimal tour C∗ when turning it into a legal tour is
at most 2γ · d(C∗).

Corollary 3. With probability at least 1/2, the detour of an optimal tour C∗ when turning
it into a legal tour is at most 4γ · d(C∗).

The algorithm can be derandomized: Simply run the algorithm for every position (a, b)
for the lower left position of grid in [−L, 0]× [−L, 0]. This increases the running time by a
factor of O(n4). Using ε = 4γ, we obtain the main result in this section.

Theorem 29. For every ε > 0, with probability at least 1/2 the derandomized PTAS obtains
a tour that has length at most (1 + ε+O(1/n)) · d(C∗). The running time is in nO(1/ε).

The running time is very large – impractical even for medium-sized instances. Neverthe-
less, the result shows that Euclidean MinTSP has substantially more structure, which can
be exploited algorithmically and leads to better approximation in the worst case than for
(general) MinTSP or ∆-MinTSP.



Chapter 4

Local Search

4.1 Clustering Problems

We introduce three variants of basic clustering problems. In these problems, we are given
a set K of data points x in a metric space (e.g., points in the Euclidean plane). The goal
is to group points into clusters, i.e., set of similar points. Tasks of this sort have many
applications in data analysis, where we need to determine similarities among, say, voters,
customers, products, etc. according to criteria such as content, behavior, characteristics, etc.

Consider the k-Center problem:
� A set K of n data points, along with a metric d : K ×K → R≥0

� A number k ≤ n of clusters we should determine
� Given a subset C ⊆ K of centers, we consider for each point x ∈ K the distance to
the closest center minc∈C d(x, c)

� Goal: Choose a subset C of |C| = k centers to minimize the max-cost maxx∈K minc∈C d(x, c),
i.e., minimize the maximum distance of any point to its closest center.

We study a natural greedy algorithm (Algorithm 18) for this problem.

[Pic: k-Center in Euclidean plane, largest radius of any cluster, example run of algorithm]

Theorem 30. Algorithm 18 has an approximation ratio of at most 2 for k-Center.

Proof. Suppose C∗ is an optimal set of k cluster centers and CA the set computed by the
algorithm. Moreover, let

r∗ = max
x∈K

min
c∈C∗

d(x, c)

rA = max
x∈K

min
c∈CA

d(x, c)

be the maximum distance to the closest center in C∗ and CA, resp.
� Assign each data point x ∈ K to closest center c ∈ C∗

� This gives distance d(x, c) ≤ r∗. Hence, by triangle inequality, any two points x, x′ ∈ K
that both get assigned to c have distance d(x, x′) ≤ 2r∗.

� Now consider the centers from CA.

59
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Algorithm 18: Greedy for k-Center

1 Input: Set K of n data points, distance function d, integer 0 < k ≤ n

2 c1 ← arbitrary point from K
3 C ← {c1}
4 for i = 2, . . . , k do
5 ci ← point with maximum distance to closest center from C
6 C ← C ∪ {ci}
7 return C

� If all the ca ∈ CA are assigned to different centers from C∗, then d(x, ca) ≤ 2r∗ for
every x assigned to c in C∗. Hence, rA ≤ 2r∗.

� Otherwise, there is a c ∈ C∗ that is closest center from C∗ for two c1A, c
2
A ∈ CA.

� Suppose c1A was chosen first by the algorithm. Later, when c2A was chosen, it was a
point with largest distance to the closest center from CA up to this point. The distance
was at most d(c1A, c

2
A) ≤ 2r∗.

� Hence, finally every point has distance rA ≤ d(c1A, c
2
A) ≤ 2r∗ to its closest cluster center.

[Pic: Clusters, optimal centers, algorithm centers, distance bounds]

Theorem 31. For every ε > 0, there is no efficient algorithm with approximation ratio
(2− ε) for k-Center (unless P = NP).

Proof. We present a reduction from the NP-complete decision problem Dominating Set:
� We are given an undirected graph G = (V,E) and an integer number k.
� D ⊆ V is dominating if, for every v ∈ V , D contains v or at least one neighbor of v
� Goal: Decide if there is a dominating set of cardinality at most k.

Note the difference to between dominating set and vertex cover: Intuitively, a dominating
set is a variant of vertex cover, where we want to cover every vertex by (itself or) a neighbor,
and not every edge by an incident vertex.

[Pic: Dominating Set, example]

We show that any (2− ε)-approximation algorithm for k-Center can be used to correctly
decide Dominating Set by proving a polynomial-time reduction. Given any instance of
Dominating Set, we construct an instance of k-Center:

� We set K = V .
� The integer k remains the same.
� The distance is d(u, v) = 1 if {u, v} ∈ E and d(u, v) = 2 otherwise.
� Hence, every solution for the k-Center instance yields max-cost 0, 1, or 2.

Clearly, the instance can be constructed in polynomial time. Now suppose, we can solve it
with our algorithm and obtain a (2− ε)-approximation.

� Dominating Set instance is yes-instance
⇐⇒ Set D ⊆ V with |D| = k contains either v or neighbor of v, for every v ∈ V
⇐⇒ Set D ⊆ V with |D| = k has a center of distance at most 1, for every v ∈ V
⇐⇒ k-Center instance has solution of max-cost 1 or 0.
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Algorithm 19: Local Search for k-Median

1 Input: Set K of n data points, distance function d, integer 0 < k ≤ n

2 t← 0
3 M0 ← arbitrary subset of k points from K
4 repeat
5 Consider all sets of k points that are neighbors of M t, i.e., that differ from M t by

exactly one center
6 Let M be a neighbor set that yields strictly smaller sum-cost than M t

7 Set M ← ⊥ if no strictly better neighbor set exists.
8 if M ̸= ⊥ then M t+1 ←M and t← t+ 1

9 until M = ⊥
10 return M t

� Hence, for any k-Center instance stemming from a yes-instance for Dominating
Set, the algorithm must return a solution with max-cost at most 1 · (2− ε) < 2, i.e.,
a solution with max-cost 0 or 1 (i.e., a feasible dominating set).

� For any no-instance, there are only solutions of max-cost 2 available.
� The algorithm determines a set of centers that represents a dominating set of size k
whenever it exists.

[Pic: Approximation gap]

A different variant is the k-Median problem:
� A set K of n data points, along with a metric d : K ×K → R≥0

� A number k ≤ n of clusters we should determine
� Given a subset M ⊆ K of centers, we consider for each point x ∈ K the distance to
the closest center minm∈M d(x,m)

� Goal: Choose a subsetM of |M | = k centers to minimize the sum-cost
∑

x∈K minm∈M d(x,m),
i.e., minimize the sum over all points, the distance to the closest center for each
point.

We consider a local search algorithm (Algorithm 19) for this problem and state the main
result without proof.

Theorem 32. Algorithm 19 has approximation ratio at most 5 for k-Median.

[Pic: Local search step]

4.2 Local Search

Algorithm 19 is an example of a general design template for so-called strict local search algo-
rithms. Local search is a general heuristic to approach combinatorial optimization problems.
The idea is an iterative greedy algorithm based on a notion of neighborhood.
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Algorithm 20: Strict Local Search

1 Input: Instance I, objective function f , Neighborhood relation N

2 t← 0
3 x0 ← ComputeStartSolution(I)
4 repeat
5 y → FindBetterNeighbor(xt) // y = ⊥ if no better neighbor exists

6 if y ̸= ⊥ then xt+1 ← y and t← t+ 1

7 until y = ⊥
8 return xt

� Consider an instance I of a minimization problem (similar for maximization)
� Let x be any feasible solution.
� For each feasible x, we choose a set N (x) of neighboring feasible solutions

The strict local search algorithm generalizes Algorithm 19 and is presented in generic form
in Algorithm 20. The algorithm uses two subroutines:

� ComputeStartSolution computes some feasible starting solution.
� FindBetterNeighbor searches through the neighborhood N (xt) of solution xt to find
any strictly better solution y ∈ N (xt) with f(y) < f(xt).

As long as a better neighboring solution y exists, the algorithm repeats the search in the
neighborhood of y, otherwise the algorithm terminates.

Some issues when implementing strict local search:
1. How to choose the neighborhoods N (x)?

Often the most important part. Neighborhoods should be large to allow for good
solutions. However, the larger the neighborhood, the more time we need to search it.
In many problems, each solution x can be represented by a bit vector bx = (bx1 , b

x
2 , . . .).

Then a popular choice is the k-flip neighborhood

Nk(x) = {y | vector by differs from bx in at most k positions }.

2. How to choose the starting solution?
Intrinsically depends on the neighborhoods. We should avoid being in or close to a
local optimum, otherwise the search is pre-determined and does not lead to meaningful
improvements.

3. Which improving neighbor y is chosen?
A popular choice for small neighborhoods is a best neighbor, i.e., one that decreases f
by the largest amount. For larger neighborhoods, one uses additional heuristics, e.g.,
draws a random neighbor until a better one is found (or a pre-defined limit on the
number of draws is reached)

Example: Gradient Descent
� Suppose you want to minimize a function f : R→ R
� Let f be continuously differentiable.
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� Neighborhood of a point x: N (x) = {y | |x− y| = δ} for some small δ > 0
� Start at some initial point x0

� Move left/right depending on the direction of steepest descent.

[Pic: Gradient Descent]

More formally, we base our decision on the gradient. The next lemma proves that if x is not
a local optimum (i.e., ∇f(x) ̸= 0), then within a small neighborhood of x, we have a point
y with f(y) < f(x). This point can be found by moving in the direction of the negative
gradient. This also works for multi-dimensional functions.

Lemma 12. Consider any continuously differentiable function f : Rn → R and a point x
with ∇f(x) ̸= 0. Then there is some η > 0 with

f(x− η · ∇f(x)) < f(x)

where ∇f(x) is the gradient of f at point x ∈ Rn.

Proof. We approximate f using linear Taylor polynomials and obtain, for small enough z,

f(x+ z) = f(x) +∇f(x)T · z +O(zT · z).

Using z = −η · ∇f(x) for small η > 0, we see that

f(x− η · ∇f(x)) = f(x)− η∥∇f(x)∥2 + η2O(∥∇f(x)∥2).

For sufficiently small η, this implies that f(x− η · ∇f(x)) is smaller than f(x).

Example: Vertex Cover (mostly for didactic reasons)

� Associate with each subset C ⊆ V of vertices a characteristic vector bC = (bCv )v∈V ,
where bCv = 1 if v ∈ C and bCv = 0 otherwise.

� We use the 1-flip neighborhood: Neighbors of set C are all subsets C ′ whose charac-
teristic vector differs by at most one entry:

N (C) = {C ′ ⊆ V | there is at most one v ∈ V with bCv ̸= bC
′

v }

� Note that C ∈ N (C). For every other C ′ ∈ N (C) with C ′ ̸= C we have either one
more vertex or one less vertex than in C.

� Say we use as feasible starting solution C0 = V . Then in each round, strict local search
will remove one vertex until every further removal leaves some edge uncovered.

� Depending on which vertices we remove first, this can lead to very good or very bad
solutions.

[Pic: Local search for vertex cover on star or path graphs]
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4.3 Complexity of Local Search

We saw in Theorem 32 that the local search in Algorithm 19 leads to a 5-approximation
for the k-Median problem. However, is local search a polynomial-time algorithm?
Clearly, each iteration of Algorithm 19 needs polynomial time. But how many steps do we
need until we reach a local optimum?

The number of steps is polynomial for the local search of Vertex Cover – starting from
V = C, the set of vertices only shrinks. Hence, the number of steps is at most n. The main
problem is which neighboring solution we pick to reach a good solution in the end. However,
for k-Median, the number of possible subsets is

(
n
k

)
, which for some values of k could be in

the order of Θ(nk). As such, it might even take long to reach any arbitrary local optimum.

We study the complexity of local search using a general class of polynomial-time local search
problems called PLS.

Definition 15. A polynomial search problem in the class PLS is given by a problem
from NPO and a neighborhood relation N over feasible solutions, along with the following
properties:

� There is a polynomial-time algorithm A that computes for each instance I a feasible
starting solution x.

� Given any instance I and a feasible solution x, there is a polynomial-time algorithm B
to decide if x is a local optimum w.r.t. N (x). If not, B returns a feasible neighboring
solution y ∈ N (x) that is strictly better – formally, if f is the function to be optimized,
then f(y) < f(x) for a minimization problem and f(y) > f(x) for a maximization
problem.

The definition describes all problems for which the components of the generic template in
Algorithm 20 can be implemented in polynomial time, i.e., A implements ComputeStartSo-
lution and B implements FindBetterNeighbor. More concisely, for every problem in PLS, we
can use the standard algorithm to compute a local optimum:

1. Let I be the instance
2. Starting solution: x = A(I)
3. Loop: while B(I, x) ̸= ⊥ do x← B(I, x)

In a local search problem from PLS, we are striving to compute a local optimum. Clearly,
local optima can be found by running the standard algorithm. As long as the number
of solutions is finite, the algorithm is guaranteed to terminate, so a local optimum exists.
However, there are many problems, for which there exist classes of instances and initial
solutions, such that the standard algorithm requires an exponential number of iterations.

In general, we are neither making a yes/no decision, nor are we optimizing and looking for a
good solution in terms of the objective function. The problems here are search problems, not
decision or optimization problems. How can be characterize the complexity of local search
problems? We use a similar approach as for NP: We use polynomial-time reductions and
identify PLS-complete problems, the hardest problems in PLS.
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Definition 16. Suppose P1 and P2 are two polynomial search problems. There is a PLS-
reduction from P1 to P2 (denoted P1 ≤PLS P2) if there are polynomial transformations Φ
and Ψ such that

� If I is an instance of P1, then Φ(I) is an instance of P2.
� If x is a local optimum for instance Φ(I) of P2, then Ψ(I, x) is a local optimum for
instance I of P1.

A problem P ∈ PLS is PLS-complete if for every problem P ′ ∈ PLS we have P ′ ≤PLS P .

[Pic: Schema reduction, completeness]

PLS-reductions and PLS-completeness:
� We efficiently transform an instance of problem P1 into an instance of problem P2.
� Suppose we “solve” P2 efficiently – i.e., find a local optimum in polynomial time.
� Then we transform the local optimum for P2 into a local optimum for P1.
� Hence, if we find local optima for P2 in polynomial time, then we can do so also for P1.
� In this sense, P1 is “easier” than P2, and P2 “harder” than P1.
� The PLS-complete problems are the “hardest” problems in PLS.

Example: Minimum Balanced Cut
� G = (V,E) undirected graph, even number of nodes n
� Each edge e ∈ E has a non-negative weight w(e) > 0.
� Partition vertex set into W and U = V \W with |W | = n/2
� Minimize sum of edge weights in the cut, i.e.,

f(W ) =
∑

e∈cut(W )

w(e) where cut(W ) = { {u, v} ∈ E | u ∈ W, v ̸∈ W}

� 2k-flip-neighborhood: W and W ′ are neighbors if |W \W ′| = |W ′ \W | ≤ k.

� Each set W has at most
(
n/2
k

)2
neighboring sets.

[Pic: Example MBC, neighboring set]

Theorem 33. It is PLS-complete to find a local optimum for Minimum Balanced Cut with
the 2-flip neighborhood.

Example: MinTSP
� Reconsider the MinTSP problem with n cities discussed above.
� Given tour C, remove k edges, and reconnect the remaining paths into new tour
� 2k-flip neighborhood: Every tour resulting from C by removal of any subset of k edges
and any subsequent reconnection

� There are at most
(
n
k

)
choices for k edges. After removing k edges, we get k paths,

and there are at most k! · 2k tours that can evolve by reconnecting these paths.
� Each tour C has at most

(
n
k

)
· k! · 2k neighboring tours.

� Local search with 2k-flip neighborhood for MinTSP is usually called k-Opt.

[Pic: Example TSP, 2-Opt, 8-Opt]

Theorem 34. There is a constant k, such that it is PLS-complete to find a local optimum
for MinTSP with the 2k-flip neighborhood.
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Algorithm 21: Local Search for Facility Location

1 Input: Set C of clients, set F of locations, distance function d, opening costs f

2 t← 0
3 X0 ← arbitrary subset of locations from F
4 repeat
5 Consider all neighbor sets of opened facilities that differ from X t by adding,

removing, or swapping a single facility
6 Let X be a neighbor set such that cost(X) < cost(X t)
7 X ← ⊥ if there no strictly better neighbor set exists.
8 if X ̸= ⊥ then X t+1 ← X and t← t+ 1

9 until X = ⊥
10 return X t

4.4 Facility Location

We consider local search for the Facility Location problem.
� C is a set of clients, F a set of possible locations for service facilities
� Distances d(x, y) between all points in C ∪ F form a metric
� At each location j ∈ F we can decide to open a facility or not
� Opening cost: fj ≥ 0 for every j ∈ F
� Connection cost of client i to location j: d(i, j)
� For a subset X ⊆ F of opened facilities, each client connects to closest one, i.e.,
dist(i,X) = minj∈X d(i, j)

� We define next(i,X) = j if d(i, j) = dist(i,X), i.e., an opened facility closest to i

Goal: Open facilities to minimize sum of opening and connection costs

cost(X) =
∑
j∈X

fj +
∑
i∈C

dist(i,X) .

[Pic: Schema Facility Location]

Consider Algorithm 21, a local search algorithm for Facility Location similar to Algo-
rithm 19 for k-Median. To define the neighborhood, we allow to add, remove or swap a
single opened facility.

Let X∗ be a global optimum and X be a local optimum in an instance of Facility Loca-
tion. The main result is that cost(X) ≤ 3 · cost(X∗). Put differently,. . .

Theorem 35. Algorithm 21 has an approximation ratio of 3.

We first show that a ratio of 3 − ε for constant ε > 0 impossible. Towards this end, we
construct an instance with a costly local optimum.

� n clients, n+ 1 service locations
� Distance in a tree: root facility, children clients, each client has a child facility
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� d(i, j) = shortest path length between i and j in the tree (this is a metric!)
� Opening cost of root f0 = 2n− 2, all other opening costs are fi = 0
� X∗ = {1, . . . , n}, all leaf facilities in the tree, cost(X∗) = n
� X = {0}, only root is open, cost(X) = n+ 2n− 2 = 3n− 2
� Ratio is 3− 2/n→ 3 as n→∞
� Observe that X is a local minimum:
Open a leaf: Same opening cost, same connection cost
Close root: Infinite connection cost
Swap root with a leaf: New cost 0 + 1 + (n− 1) · 3 = 3n− 2, same cost

[Pic: Tree, facilities, clients, distances, opening costs]

Concerning the upper bound, we here only show a ratio of 5, i.e., cost(X) ≤ 5 · cost(X∗).
The bound of 3 in Theorem 35 can be shown by a more advanced analysis.

To show the bound of 5, we spilt cost(X) into connection and opening costs and bound each
part separately.

Lemma 13. Let X be a local minimum and X∗ be a global minimum. Then∑
i∈C

dist(i,X) ≤ cost(X∗).

Proof. Consider j ∈ X∗ \X.

� Suppose we also open j in addition to X.
� Then cost(X ∪ {j}) ≥ cost(X), since X is local minimum.
� Suppose for X ∪ {j} we connect to j exactly the clients i connected to j in X∗, i.e.,
where next(i,X∗) = j. We denote the resulting cost by cost′(X ∪ {j}).

� Now cost′(X ∪{j}) ≥ cost(X ∪{j}) ≥ cost(X). But cost′(X ∪{j}) and cost(X) differ
only by fj and connection costs for clients i connected to j, so∑

i :next(i,X∗)=j

dist(i,X∗) + fj ≥
∑

i :next(i,X∗)=j

dist(i,X)

[Pic: Stars of clients connected to facilities, change when adding j to X]

� Summing this inequality for every j ∈ X∗ \X and adding connection costs for clients
connected to facilities in X ∩X∗, we get

cost(X∗) ≥
∑
i∈C

dist(i,X∗) +
∑

j∈X∗\X

fj ≥
∑
i∈C

dist(i,X)

This bounds the connection costs in the local optimum. Let us now turn to the opening
costs.
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Lemma 14. Let X be a local minimum and X∗ be a global minimum. Then∑
j∈X

fj ≤ 2 ·

(
cost(X∗) +

∑
i∈C

dist(i,X)

)
≤ 4 · cost(X∗).

Proof. The second inequality is a direct consequence of the previous lemma. We proceed
to prove the first inequality. We now try to exchange a facility j ∈ X by a closest facility
j∗ ∈ X∗.

� X is a local optimum, so cost(X) ≤ cost((X ∪ {j∗}) \ {j})
� The cost change from X to (X ∪ {j∗}) \ {j} can be bounded by assuming that only
clients connected to j switch to j∗. This is not an improvement (otherwise the optimal
cost for (X ∪ {j∗}) \ {j} would be one for sure), so

fj +
∑

i :next(i,X)=j

d(i, j) ≤ fj∗ +
∑

i :next(i,X)=j

d(i, j∗)

or, equivalently,

fj ≤ fj∗ +
∑

i :next(i,X)=j

(d(i, j∗)− d(i, j)) (4.1)

How big is the difference between d(i, j) and d(i, j∗)?
� Triangle inequality: d(i, j∗) ≤ d(i, j) + d(j, j∗), so d(i, j∗)− d(i, j) ≤ d(j, j∗)
� j∗ is closest to j, so d(j, j∗) ≤ d(j, j′) for all j′ ∈ X∗, especially for j′ = next(i,X∗)
� This implies

d(i, j∗)− d(i, j) ≤ d(j, j∗) ≤ d(j, next(i,X∗)) ≤ d(j, i) + d(i, next(i,X∗))

= dist(i,X) + dist(i,X∗)

� Hence, using (4.1) above:

fj ≤ fj∗ +
∑

i :next(i,X)=j

(dist(i,X) + dist(i,X∗)) (4.2)

[Pic: Closest facility from X∗, distance bound]

Suppose every facility j∗ is chosen as a closest one by exactly one facility in j. Then, by
summing (4.2) over all j ∈ X, we sum over all fj∗ exactly once and obtain∑

j∈X

fj ≤
∑
i∈C

(dist(i,X) + dist(i,X∗)) +
∑

j∗∈X∗

fj∗

=
∑
i∈C

dist(i,X) + cost(X∗)

≤ 2 · cost(X∗)

where the last inequality uses the previous lemma. This proves a stronger bound than the
one claimed in the present lemma, which would imply the ratio of 3 claimed in Theorem 35.

In general, we might count a facility j∗ ∈ X∗ more than once as a closest facility. Towards
this end, we consider a primary facility from X:
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� Suppose j∗ ∈ X is the closest facility for facility j ∈ X.
� For j∗, consider X(j∗) = {j ∈ X | j∗ closest facility from X∗ for j}.
� j is a primary facility for j∗ if it the facility from X(j∗) closest to j∗

� Otherwise, j is a secondary facility.

We provide an upper bound on cost(X) by removing any secondary facility j ∈ X. Consider
its’ closest facility j∗ from X∗. Let j′ ∈ X be the primary facility of j∗. Suppose we remove
j and all clients connected to j get connected to j′.

� Clearly, the opening cost decreases by fj.
� What about the connection cost of a client i connected to j (with next(i,X) = j)?

d(i, j′)− d(i, j) ≤ d(j, j∗) + d(j∗, j′)

≤ 2 · d(j, j∗) (j′ primary, so closer to j∗ than j)

≤ 2 · d(j, next(i,X∗)) (j∗ the one from X∗ closest to j)

≤ 2 · (d(j, i) + d(i, next(i,X∗)))

= 2 · (dist(i,X) + dist(i,X∗))

� This is an upper bound on the increase in connnection cost for client i when we remove
j, since i might only get smaller connection cost when being connected to its closest
facility from X \ {j}.

� Since X is a local minumum we see that

fj ≤
∑

i :next(i,X)=j

2 · (dist(i,X) + dist(i,X∗)) (4.3)

� Now we combine (4.2) and (4.3) to obtain∑
j∈X

fj ≤
∑

j∗∈X∗

fj∗ + 2 ·
∑
i∈C

(dist(i,X) + dist(i,X∗))+

≤ 2 ·

(
cost(X∗) +

∑
i∈C

dist(i,X)

)
≤ 4 · cost(X∗)

While Algorithm 21 comes with a good approximation guarantee, the running time is not
necessarily polynomial. We change Algorithm 21 to accept a neighbor set X only if
represents a significant improvement step. For a fixed value δ ∈ (0, 1), we apply the
following choice for neighbor set X:

X is a neighbor set such that ε) · cost(X) < (1− δ) · cost(X t),
or X ← ⊥ if no such neighbor set exists.

Clearly, the adjusted algorithm converges only to an approximate local optimum, i.e.,
the final solution X t satisfies that (1−δ)·cost(X t) ≤ cost(X) for every neighbor X ∈ N (X t).
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Lemma 15. Let X0 be the initial solution and X∗ an optimal solution. Algorithm 21 with
significant improvement steps converges to an approximate local optimum in a number of
steps at most

1

δ
· log2

(
cost(X0)

cost(X∗)

)
.

Proof. How many significant improvement steps are possible?
� Starting with a solution of cost(X0), we decrease the cost to at most a factor of (1− δ)
in every step. After t steps, the solution has value at most cost(X0) · (1− δ)t

� The cost cannot decrease below cost(X∗). Hence, if

cost(X∗) ≥ cost(X0) · (1− δ)t

the algorithm must have terminated. Solving for t, we see that if

t ≥ log1/(1−δ)

(
cost(X0)

cost(X∗)

)
the algorithm must be done. Applying bounds on the logarithm

log1/(1−δ) x =
1

log2
1

1−δ

· log2 x =
1

log2
(
1 + δ

1−δ

) · log2 x ≤ 1
δ

1−δ

· log2 x ≤
1

δ
· log2 x

shows that if

t ≥ 1

δ
· log2

(
cost(X0)

cost(X∗)

)
the algorithm must have terminated.

For a constant ε > 0, we choose δ = ε/|F |. With this choice, even the approximation ratio
is almost preserved – the central bounds in (4.2) and (4.3) continue to hold if we increase
the right-hand sides by δ · cost(X). As we sum over (at most) |F | facilities, we obtain a cost
increase of ε · cost(X). We omit the details and state the main result.

Theorem 36. Let X0 be the initial solution and X∗ an optimal solution. Algorithm 21 with
significant improvement steps converges to a (3 + ε)-approximate solution in at most

|F |
ε
· log2

(
cost(X0)

cost(X∗)

)
steps, which is a number polynomial in the input size.



Chapter 5

Linear Programming

5.1 Canonical Form and Examples

Linear programming is a very important area with a large number of practical applications.
The goal is to optimize a linear objective function in variables x1, . . . , xn, subject to a set
of linear constraints that restrict the solution space. Here is a simple example with n = 4
variables and m = 5 constraints:

Minimize 2x1 − x2 + 4x4

subject to x1 − 2x2 + x3 ≥ 5
2x1 + 3x2 − 4x4 ≥ −10

3x2 − 2x3 ≥ 2
x2 ≥ 0
x4 ≥ 0

(5.1)

For brevity, we will usually write linear programs using matrix-vector notation. With

x =


x1

x2

x3

x4

 , c =


2
−1
0
4

 A =


1 −2 1 0
2 3 0 −4
0 3 −2 0
0 1 0 0
0 0 0 1

 and b =


5
−10
2
0
0

 ,

we can express the optimization problem in a more compact form

Minimize
4∑

i=1

cjxj

subject to
4∑

i=1

aijxj ≥ bi for each i = 1, . . . , 5

or, simply
Minimize cTx

subject to Ax ≥ b.

We will work with these formulations throughout. For simplicity, we assume all param-
eters in c, A and b are rational numbers.

71
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Definition 17. A linear program (LP) in canonical form with n variables and m con-
straints consists of a vector xT = (x1, . . . , xn) of variables, a vector c ∈ Qn of cost coefficients,
a matrix A ∈ Qm×n and a vector b ∈ Qm. The goal is to

Minimize cTx

subject to Ax ≥ b.

Every linear optimization problem can be expressed using an LP in canonical form:
� If we want to maximize cTx, we can minimize −cTx.
� A ≤-constraint is equivalent to a ≥-constraint:

n∑
j=1

aijxj ≤ bi ⇐⇒
n∑

j=1

−aijxj ≥ −bi.

Example: Production planning
� n products, m resources
� Product j can be sold at a price of pj ≥ 0 per unit.
� To produce a unit of product j we need aij units of resource i
� A supply of bi units of resource i is available.
� Goal: Determine the units xj of each product j to maximize the total income.

Linear program (in canonical form):
� Total income is

∑n
j=1 pjxj.

� Each resource i must not be overused, so
∑n

j=1 aijxj ≤ bi
� We cannot produce negative units of product j, so xj ≥ 0.

Minimize
n∑

j=1

−pjxj

subject to
n∑

j=1

−aijxj ≥ −bi for each i = 1, . . . ,m

xj ≥ 0 for each j = 1, . . . , n

Example: Weighted Vertex Cover
� Requires a binary decision for each node (makes the problem NP-hard)
� For simplicity, let G = (V,E) with V = {1, 2, . . . , n}
� xv ∈ {0, 1} indicates if node v is included in vertex cover (xv = 1) or not (xv = 0).
� Node v has cost wv ≥ 0 when being in the cover.
� Each edge should be “covered”. How to express this as linear constraint?
� xu + xv ≥ 1 for each e = {u, v} ∈ E.

Integer linear program (ILP) for Weighted Vertex Cover:

Minimize
∑
v∈V

wvxv

subject to xu + xv ≥ 1 for each {u, v} ∈ E
xv ∈ {0, 1} for each v ∈ V

(5.2)
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Suppose we replace xv ∈ {0, 1} by 0 ≤ xv ≤ 1.
� We obtain a linear program (not an integer linear one). It yields a fractional Vertex
Cover problem, where we can break each vertex into arbitrary pieces and include only
a fraction of it in a cover.

� The linear program is a linear relaxation of (5.2) (more solutions are feasible). The
optimal fractional solution can obtain a smaller objective value.

Since the 1980s there exist polynomial-time algorithms to optimally solve linear
programs, i.e., algorithms that return an optimal vector x∗ in time polynomial in n, m and
the length of the (binary) encoding1 of all parameters aij, ci and bj. We will give a high-level
overview of some of these techniques, as well as structural properties that are useful for the
application of LP-ideas in approximation algorithms for NP-hard problems.

5.2 Polytopes, Corners, and a Local Search Algorithm

Consider a linear program in canonical form. Some definitions/observations:
� An LP is solvable if there is at least one vector x with Ax ≥ b.
� Such a vector is called a solution.
� Solution space P = {x ∈ Rn | Ax ≥ b} of the LP does not depend on c.
� Consider a single constraint

∑n
j=1 aijxj ≥ bi. The solution space Pi = {x ∈ Rn |∑n

j=1 aijxj ≥ bi} of this constraint is a (closed) half space.
� Half space is convex, i.e., for all x,y ∈ Pi we have {λx+ (1− λ)y | λ ∈ [0, 1]} ⊆ Pi.
� P =

⋂m
i=1 Pi is the intersection of half spaces of all constraints

� P is a polytope. It is convex (since half spaces are convex).

Example: Consider the following LP with solutions from R2.

Maximize x1 + x2

subject to x1 + 2x2 ≤ 3
2x1 + x2 ≤ 3

x1 ≥ 0
x2 ≥ 0

(5.3)

[Pic: Half spaces from constraints, solutions, hyperplanes, optimal corner solution]

Optimization of an LP:
� Consider the vector c. All solutions x with cTx = 0 have the same value 0.
� {x ∈ Rn | cTx = 0} is a hyperplane orthogonal to c
� Generally, {x ∈ Rn | cTx = α} is a hyperplane with all solutions of some value α ∈ R.
� All these hyperplanes are parallel and orthogonal to c.
� Maximization: Pick a hyperplane farthest in the direction of c that contains a solution
to Ax ≥ b (minimization: in direction of −c)

1A major open problem in the area is if there exists a strongly polynomial-time algorithm, whose running
time depends only on n and m, but not on the size of the numbers (assuming that arbitrarily large numbers
can be added or multiplied in a single step).
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� Three possibilities for LPs:
(a) Infeasible LP, empty solution space
(b) Unbounded LP, solution space unbounded (in the direction of optimization)
(c) Bounded LP, solution space bounded (in the direction of optimization)

[Pic: Infeasible, unbounded, bounded, dependence on direction of c]

Infeasible/unbounded conditions can be identified along the way in the algorithm(s).
We concentrate on bounded LPs.

� Consider the solution polytope P .
� A side (in Rn) of P is called facet. It separates the inside of P from the rest of Rn.
� A ridge is the intersection of two facets.
� . . .
� How many facets have to intersect for a vertex or corner of P?
� Since Rn has n dimensions, we need at least n intersecting facets, i.e., n half spaces
from different constraints to create a corner.

� The intersecting sides have to be linearly independent, i.e., the coefficient vectors ai of
the constraints must be linearly independent.

� Why are corners interesting? There is always at least one optimal solution in one
of the corners of P .

[Pics: Facets and corners in R2 and R3, examples for linearly dependent constraints]

Definition 18. A corner or vertex of a convex polytope P is a point x defined by the
following two equivalent criteria:

1. x is a point where n linearly independent constraints are fulfilled exactly.
2. There is no vector y ∈ Rn,y ̸= 0 such that x+ y ∈ P and x− y ∈ P .

There are also degenerate corners, where more than n constraints are fulfilled simulta-
neously. If there are several sets of n linearly independent constraints, we have a “set of
corners” in a single point. These corners require a special treatment in algorithm and anal-
ysis below. It is technical (but not very insightful), and for the most part we will ignore
degeneracy of corners in our overview here.

Theorem 37. If a bounded LP with n variables has at least n linearly independent con-
straints, then at least one optimal solution x∗ is a corner of the solution polytope P .

Note that both conditions together are necessary and sufficient:
� If the polytope P is unbounded in the direction of optimization, there is no optimal
solution at all.

� If the LP is bounded but does not have n linearly independent constraints, then the
polytope P contains at least one infinite line. The set of optimal solutions is infinitely
large (since no corner or vertex can exist).

We proceed to give a high-level description of the Simplex Algorithm. It is a local search
algorithm that moves from one corner to the next in order to optimize the objective function.
By doing so, it actually manages to find a globally optimal solution!
To apply local search, we need a notion of neighborhood.



5.2. POLYTOPES, CORNERS, AND A LOCAL SEARCH ALGORITHM 75

Definition 19. Two corners x and x′ of a convex polytope P are neighbors if there are
n− 1 linearly independent constraints that are exactly fulfilled by x and x′.

The Simplex algorithm moves to a neighboring corner that improves the objective function.
It also involves a consistent tie-breaking to overcome “plateus” in the objective function
(e.g., at degenerate corners) while avoiding to re-visit previous corners.

While the canonical form is intuitive, the algorithm uses as input an LP in standard form,
which is more useful from a technical perspective.

Definition 20. A linear program (LP) in standard form with n variables and m con-
straints consists of a vector xT = (x1, . . . , xn) of variables, a vector c ∈ Qn of cost coeffi-
cients, a matrix A ∈ Qm×n and a vector b ∈ Qm. The goal is to

Minimize cTx

subject to Ax = b
x ≥ 0

Every LP in canonical form has an equivalent formulation in standard form:
� For every inequality

∑n
j=1 aijxj ≥ bi we introduce a slack variable si and obtain the

two new constraints

n∑
j=1

aijxj − si = bi and si ≥ 0

� The standard from requires xj ≥ 0 for every i = 1, . . . , n.
If xj ≥ 0 in canonical form, no adjustment needed.
If xj ≤ 0 in canonical form, we replace xj by −x−

j throughout, and x−
j ≥ 0.

If xj has no restriction in canonical form, we replace xj by x+
j − x−

j throughout, and
x+
j ≥ 0, x−

j ≥ 0.

Example: Consider the following LP and its transformation into standard form:

Minimize 2x1 + 4x2

subject to x1 + x2 ≥ 3
2x1 + x2 ≥ 14

x1 ≥ 0

Minimize 2x1 + 4x+
2 − 4x−

2

subject to x1 + x+
2 − x−

2 − s1 = 3
2x1 + x+

2 − x−
2 − s2 = 14

x1 ≥ 0
x+
2 , x

−
2 ≥ 0

s1, s2 ≥ 0

Some observations:
� We introduced three more variables. Instead of 2-dimensional (x1, x2) ∈ R2 we now
look for a solution in 5-dimensional (x1, x

+
2 , x

−
2 , s1, s2) ∈ R5.

� When introducing s1 and s2, we also obtain two equality constraints. This keeps the
dimension of solution space the same, also maintains the shape of the space.
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� The transformation xj = x+
j − x−

j can truly increase the dimension of the space and
could also create new corners!

Example:

Minimize cTx

subject to x1 + x2 ≤ 1
x1 ≥ 0
x2 ≥ 0

Minimize cTx

subject to x1 + x2 − s1 = 1
x1 ≥ 0
x2 ≥ 0
s1 ≥ 0

[Pic: Solution space = triangle, embedding in 3-dimensional space]

Corners in standard form:
� Suppose an LP in standard form has m linearly independent equality constraints.
� Each equality constraint reduces the dimension of P by one (by linear independence)
� If the solution polytope P ̸= ∅, then P ⊆ Rn has n−m dimensions.
� Consider a corner x of P . Since x ∈ P , the m equality constraints are fulfilled exactly.
� x fulfills n−m additional constraints exactly (i.e., xj = 0 for n−m variables xj), i.e.,
there is a set N ⊆ {1, . . . , n} of n−m variables, and xj = 0, for every j ∈ N .

For a given corner x, we define basic and non-basic variables:
� j ∈ N is called a non-basic component, xj a non-basic variable
� The remaining B = {1, . . . , n} \N are called a basis
� j ∈ B is a basic component, xj a basic variable.
� Note: If x is non-degenerate, then xj > 0 for every basic j ∈ B.
� We call the column vector aj for basic j ∈ B a basis vector.

More on basic variables:
� AB is the (m×m)-submatrix of basis vectors from A
� AN the submatrix of the remaining (non-basis) column vectors from A
� Linear independent rows of equality constraints⇒ linear independent basis vectors⇒
AB is regular.

� xB denotes the subvector of x of basic variables, xN the one for non-basic variables
� Note that b = A · x = ABxB +ANxN = ABxB, since xN = 0
� We see that xB = A−1

B b ≥ 0

Neighboring corners and the Simplex algorithm (very high-level):
� Two neighboring corners x and x′ differ by one exactly fulfilled constraint
� Their sets N and N ′ are N ′ = (N \ {k}) ∪ {j} for some j, k ∈ {1, . . . , n}, j ̸= k
� The bases B and B′ change correspondingly. How to execute a basis change?
� We use c,A−1

B and aj to determine whether or not including j into the basis is profitable
� Adding j to the basis yields a direction, along which we can increase the solution value.
� We move the solution in this direction as much as possible.
� We can move forever → LP is unbounded.
� Otherwise, a basic variable starts to violate xk ≥ 0. Then k gets evacuated, and the
basis change is complete.
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Algorithm 22: Deterministic Rounding for Weighted Vertex Cover

1 Input: Graph G = (V,E), vertex costs wv ≥ 0

2 x∗ ← optimal solution of LP (5.4)
3 C ← ∅
4 for each v ∈ V do
5 if x∗

v ≥ 1/2 then C ← C ∪ {v}
6 return C

Running Times:
� Each iteration of Simplex runs in polynomial time (quite demanding: matrix inversion)
� There exist polytopes in Rn and initial solutions, such that the algorithm must visit
Ω(2n) corners. It is not a polynomial-time algorithm in terms of worst-case time
complexity.

� Still, often very fast and widely applied in practice!
� Simplex was designed in the 1940s. In 1979, first algorithm with guaranteed polynomial
running time: Ellipsoid (not very practical though)

� Since mid-1980s: poly-time Interior-Point methods. Good for large LPs when ap-
proximately optimal solutions suffice

5.3 Rounding and Approximation

5.3.1 Vertex Cover and Independent Set

Recall the Weighted Vertex Cover problem:
� Undirected graph G = (V,E)
� xv ∈ {0, 1} indicates if node v ∈ V is included in vertex cover (xv = 1) or not (xv = 0).
� Node v has cost wv ≥ 0 when being in the cover.
� Each edge should be “covered”, i.e., xu + xv ≥ 1 for each e = {u, v} ∈ E.

Linear relaxation for Weighted Vertex Cover (c.f. (5.2)):

Minimize
∑
v∈V

wvxv

subject to xu + xv ≥ 1 for each {u, v} ∈ E
xv ∈ [0, 1] for each v ∈ V

(5.4)

Consider the Rounding algorithm (Algorithm 22). It computes x∗, an optimal solution to
the LP-relaxation. It includes a vertex v ∈ V into the vertex cover if and only if x∗

v ≥ 1/2.

Theorem 38. Algorithm 22 has approximation ratio 2.

Proof. For every {u, v} ∈ E we have x∗
v + x∗

u ≥ 1, so either x∗
u ≥ 1/2, or x∗

v ≥ 1/2, or both.
Hence, the set C ⊆ V returned by the algorithm is indeed a feasible vertex cover.

What about the approximation ratio?
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� Consider an optimal vertex cover C∗ and the cover C computed by the algorithm.
� Since x∗ solves the LP relaxation optimally, we know∑

v∈V

wvx
∗
v ≤

∑
v∈C∗

wv.

� For every v ∈ C, we know that 1/2 ≤ x∗
v, so 1 ≤ 2x∗

v.
� Hence, ∑

v∈C

wv ≤
∑
v∈C

wv · 2x∗
v ≤ 2 ·

∑
v∈V

wvx
∗
v ≤ 2 ·

∑
v∈C∗

wv .

Interestingly, the linear relaxation (5.4) is half-integral, i.e., every corner of the solution
polytope P is a vector with entries x ∈ {0, 1/2, 1}n.

� Suppose x has entries xv ̸∈ {0, 1/2, 1}.
� We define V< = {v ∈ V | 0 < xv < 1/2} and V> = {v ∈ V | 1/2 < xv < 1} as the set
of all non-half-integral entries.

� Consider a vector y defined by

yv =


ε if v ∈ V<

−ε if v ∈ V>

0 otherwise

� If x+ y ∈ P and x− y ∈ P , then x cannot be a corner by Definition 18.
� By choosing ε > 0 small enough:
→ We ensure that 0 ≤ xv ± yv ≤ 1 for each v ∈ V .
→ Constraints xu + xv ≥ 1 for all edges remain satisfied even for the vectors x± y.

� Hence, x+ y ∈ P and x− y ∈ P , so x cannot be a corner.
Suppose we want to apply the same idea for the Independent Set problem:
� xv ∈ {0, 1} indicates if node v ∈ V is included in indep. set (xv = 1) or not (xv = 0).
� Node v has profit 1 when being in the independent set.
� Each edge should be “conflict-free”, i.e., xu + xv ≤ 1 for each e = {u, v} ∈ E.

LP-relaxation for Independent Set

Maximize
∑
v∈V

xv

subject to xu + xv ≤ 1 for each {u, v} ∈ E
xv ∈ [0, 1] for each v ∈ V

(5.5)

Lemma 16. There are instances of Independent Set with n vertices such that the frac-
tional optimum x∗ and the optimal independent set S∗ differ in value by a factor of Ω(n):∑

v∈V

x∗
v ≥ n/2 · |S∗|.

Proof. For the complete graph with n vertices, we have |S∗| = 1. Setting x∗ = 1/2 yields a
feasible solution to (5.5) with value at least n/2.
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5.3.2 Matching and Total Unimodularity

Consider the Weighted Max-Matching problem:
� A matching is essentially an “independent set of edges”
� xe ∈ {0, 1} indicates if edge e ∈ E is included in matching (xe = 1) or not (xe = 0).
� Edge e has profit we when being in the matching
� Each vertex should be “conflict-free”, i.e.,

∑
u:{u,v}∈E x{u,v} ≤ 1 for each v ∈ V .

LP-relaxation for Weighted Max-Matching

Maximize
∑
e∈E

wexe

subject to
∑

u:{u,v}∈E

x{u,v} ≤ 1 for each v ∈ V

xe ∈ [0, 1] for each e ∈ E

(5.6)

Some comments:
� The constraint matrix A here is the node-edge incidence matrix of G.
� Similar to Independent Set, the LP (5.6) can have strange solutions (e.g., in the
complete graph take every edge with xe = 1/(n− 1)).

� However, optimal fractional and integral solutions always differ in value by at most a
constant factor (Exercise).

� There are even better conditions for bipartite graphs.

Definition 21. A matrix A is called totally unimodular if for every square submatrix B
of A, the determinant is det(B) ∈ {−1, 0, 1}.

We state the following results without formal proofs.

Theorem 39. If the constraint matrix A of an LP is totally unimodular and the vector b
has only integral entries, then each corner of the polytope P = {x ∈ Rn | Ax = b,x ≥ 0}
has only integral coordinates.

Theorem 40. Consider the incidence matrix A of a graph G:
1. G undirected: A is totally unimodular if and only if G is bipartite.
2. G directed: A is always totally unimodular.

Corollary 4. The LP-relaxation (5.6) for bipartite graphs has an optimal solution that is
integral and represents an optimal solution to Weighted Max-Matching.

5.3.3 Set Cover

Weighted Set Cover problem:
� Set E = {1, . . . ,m} of elements, set system S ⊆ 2E, i.e., a family of n subsets of E
� Let S = {S1, . . . , Sn} denote the subsets. Each subset Sj has a weight/cost wj ≥ 0.
� Consider a set C ⊆ {1, . . . , n} of subset indices and the collection {Sj | j ∈ C}.
� C is a set cover if for every element e ∈ E there is at least one j ∈ C such that e ∈ Sj.



80 CHAPTER 5. LINEAR PROGRAMMING

� Put differently, the union
⋃

j∈C Sj = E, i.e., it covers all of E.
� Goal: Find a set cover C with minimal total cost w(C) =

∑
j∈C wj.

Example: Elements E = {1, . . . , 10}, sets
� S1 = {3, 4, 5, 8}
� S2 = {1}
� S3 = {1, 3, 5, 7, 9}
� S4 = {2, 4, 10}
� S5 = {2, 3, 4, 5, 6}
� S6 = {2, 6, 10}

{S1, S3, S4, S5} is a set cover. {S1, S3, S6} is another set cover.

Vertex Cover is a special case of Set Cover:
� Edge e ←→ Element e
� Vertex v ←→ Set Sv = {e ∈ E | e = {u, v}} of incident edges/elements
� Then any vertex cover is a set cover and vice versa.

LP-relaxation for Weighted Set Cover (c.f. (5.4)). Intention: xj = 1 if j ∈ C, 0 otherwise.

Minimize
n∑

j=1

wjxj

subject to
∑
j:e∈Sj

xj ≥ 1 for each e ∈ E

xj ∈ [0, 1] for each j = 1, . . . , n

(5.7)

We can extend Algorithm 22 to obtain a feasible solution for Set Cover. The approxima-
tion ratio is f = maxe∈E |{j | e ∈ Sj}|, the maximum number of sets that a single element
is contained in. The adjustment of the algorithm and the proof are left as an exercise.

Corollary 5. There is a deterministic rounding algorithm for Weighted Set Cover with
approximation ratio f .

Note that f = 2 for Vertex Cover, since every element (edge) is contained in at most 2
sets (sets of incident edges for incident vertices).

If f is large, the deterministic rounding approach becomes unattractive. Instead, we present
a Randomized Rounding idea in Algorithm 23. While the algorithm is not always guar-
anteed to return a feasible set cover, we can show the following guarantee. Suppose C∗ is an
optimal set cover, and w(C∗) =

∑
j∈C∗ wj is the optimal cost.

Theorem 41. After T = ⌈lnm+1⌉ repetitions, the probability that C is a feasible set cover
is at least 1− 1/e. The expected cost of C is E[w(C)] ≤ ⌈lnm+ 1⌉ · w(C∗).

Proof. We first bound the probability that the algorithm produces a feasible set cover.
� Consider a single element e ∈ E. e is contained in k sets. To reduce notation, assume
w.l.o.g. these are sets S1, . . . , Sk.
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Algorithm 23: Randomized Rounding for Weighted Set Cover

1 Input: Set system S, set costs wj ≥ 0

2 x∗ ← optimal solution of LP (5.7)
3 C ← ∅
4 for t = 1, . . . , T do
5 Ct ← ∅
6 for j = 1, . . . , n do include j into Ct with prob. x∗

j

7 C ← C ∪ Ct

8 return C

� Probability that Sj is not chosen: 1− x∗
j .

� Probability that none of the k sets is chosen (and e is uncovered):
∏k

i=1(1− x∗
i )

� Observe that

k

√√√√ k∏
i=1

(1− x∗
i ) ≤ 1

k

k∑
i=1

(1− x∗
i ) = 1−

∑k
i=1 x

∗
i

k
≤ 1− 1

k

where the first inequality is the AM-GM inequality, and the second inequality is due
to the constraint for e in LP (5.7).

� This implies that in one round

Pr[e uncovered] =
k∏

i=1

(1− x∗
i ) ≤

(
1− 1

k

)k

≤ 1

e
where e ≈ 1.58.

� Hence, using T ≥ lnm+ 1, we see

Pr[e uncovered after T repetitions] ≤
(
1

e

)T

≤
(
1

e

)lnm

·
(
1

e

)
=

1

m · e
.

� Now apply a union bound: The probability that at least one (or more) of the elements
is uncovered is at most the sum of probabilities that any single one of the elements is
uncovered,

Pr[at least one e ∈ E uncovered after T repetitions] ≤
∑
e∈E

1

m · e
=

1

e
.

Thus, with probability at least 1− 1/e, all elements are covered after T repetitions.

[Pic: Union bound]

Now consider the expected cost of the solution. Since Pr[j ∈ Ct] = x∗
j , we see

E[w(Ct)] =
∑
j

wj · Pr[j ∈ Ct] =
∑
j

wjx
∗
j ≤ w(C∗).
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Using C =
⋃

t Ct, we can bound

E[w(C)] ≤
T∑
t=1

E[w(Ct)] ≤
T∑
t=1

w(C∗) = T · w(C∗),

which proves the theorem.

5.3.4 Integrality Gap

In randomized rounding algorithms, we use a fractional optimum for an LP and round it
to an intergral solution. In this process, the deterioration between optimal fractional and
integral solutions is an important value. It describes how much value we must sacrifice from
the optimal fractional value when we want to obtain any integral solution.

Consider an optimization problem with instances I, which we formulate as a linear program.
For an instance I ∈ I, consider the linear program LP (I). We denote by OPTfrac(I) the
optimal value of any fractional solution and OPTint(I) the optimal value of any integral
solution of LP (I). The integrality gap (for a problem) is the (worst-case) ratio of values of
integral and fractional optima.

Definition 22. For a minimization problem, the integrality gap of LP (I) for instance
I ∈ I is

OPTint(I)

OPTfrac(I)
≥ 1.

The integrality gap of an LP for a minimization problem is defined as

sup
I∈I

OPTint(I)

OPTfrac(I)
.

For a maximization problem, the integrality gaps are defined by

OPTfrac(I)

OPTint(I)
for any instance I ∈ I, and sup

I∈I

OPTfrac(I)

OPTint(I)
for the problem.

Examples:
� Vertex Cover:
The standard LP (5.4) has an integrality gap of at most 2, since Algorithm 22 obtains
an integral 2-approximation w.r.t. the fractional optimum. A clique with n vertices
shows that the integrality gap can be as high as 2− 1/n.

� Independent Set:
Lemma 16 shows that the integrality gap for LP (5.5) is at least n/2. It can be observed
that the gap in any instance is at most n/2.

� Set Cover:
Theorem 41 shows that Algorithm 23 with constant probability obtains an integral
solution that is at most T = O(lnm) times more expensive than the fractional optimum
x∗ of LP (5.7). In particular, this implies that such an integral solution must always
exist. Hence, the integrality gap of LP (5.7) is at most T = O(lnm).
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5.3.5 MaxSat

Weighted MaxSat problem:
� n boolean variables x1, . . . , xn, k clauses C1, . . . , Ck

� Each clause Ci is an “OR-of-literals” (e.g. (x1 ∨ x̄3 ∨ x5 ∨ x̄9))
� Each clause has a weight wi ≥ 0.
� Goal: Set each variable xj to true (1) or false (0) in order to maximize the sum of
weights of satisfied clauses.

A deterministic 2-approximation algorithm is very easy to obtain (Exercise).

Towards an improved approximation ratio, consider an ILP formulation. We use a variable
yj ∈ {0, 1} that corresponds to boolean variable xj. For each clause Ci, we have a variable
zi, where zi = 1 if Ci is satisfied, and 0 otherwise. The ILP reads

Maximize
k∑

i=1

wizi

subject to
∑
xj∈Ci

yj +
∑
x̄j∈Ci

(1− yj) ≥ zi for each i = 1, . . . , k

yj, zi ∈ {0, 1} for each j = 1, . . . , n, i = 1, . . . , k

(5.8)

For the LP-relaxation we replace yj, zi ∈ {0, 1} by 0 ≤ yj, zi ≤ 1.

We analyze two rounding algorithms.
1. Simple rounding: For each variable xj, independently set xj = 1 with probability

1/2, and 0 otherwise.
2. LP rounding: Solve the LP-relaxation optimally, let (y∗, z∗) denote an optimal so-

lution. For each variable xj, independently set xj = 1 with probability y∗j , and 0
otherwise.

Let Wi be a random variable that measures the “expected weight of a clause”, i.e.,

Wi =

{
wi if Ci is satisfied

0 otherwise.

Lemma 17. Consider a clause Ci with ℓ literals. Then
1. E[Wi] = (1− 1/2ℓ) · wi for simple rounding, and
2. E[Wi] ≥

(
1− (1− 1/ℓ)ℓ

)
· z∗i · wi for LP rounding.

Proof. Note that E[Wi] = Pr[Ci satisfied] · wi, so we just need to bound Pr[Ci satisfied].
Since clause Ci has length ℓ, for simple rounding we observe

Pr[Ci not satisfied] =

(
1

2

)ℓ

and Pr[Ci satisfied] = 1− 1

2ℓ
.

For LP rounding, we assume w.l.o.g. that Ci = (x1 ∨ x2 ∨ . . . ∨ xℓ), which implies

Pr[Ci not satisfied] =
ℓ∏

j=1

(1− y∗j )
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and

Pr[Ci satisfied] = 1−
ℓ∏

j=1

(1− y∗j )

≥ 1−

(
1

ℓ

ℓ∑
j=1

(1− y∗j )

)ℓ

= 1−

(
1−

∑ℓ
j=1 y

∗
j

ℓ

)ℓ

≥ 1−
(
1− z∗i

ℓ

)ℓ

≥

(
1−

(
1− 1

ℓ

)ℓ
)
· z∗i .

Here the first inequality follows from the AM-GM inequality (similar as in the proof of
Theorem 41). The second one is due to the LP constraint for z∗i . Finally, the last inequality

follows, since 1 −
(
1− z

ℓ

)ℓ
is concave in z ∈ [0, 1] – it lies above the direct line between

1−
(
1− 0

ℓ

)ℓ
= 0 and 1−

(
1− 1

ℓ

)ℓ
. The point

(
1−

(
1− 1

ℓ

)ℓ) · z∗i corresponds to z∗i on that

direct line.

[Pic: Concave function, direct line, point for z∗i ]

Comparing simple and LP rounding:
� For clauses with length ℓ ≥ 3, simple rounding seems much better. 1− (1− 1/ℓ)ℓ goes
to 1− 1/e, whereas (1− 1/2ℓ) goes to 1, for large ℓ→∞.

� If there are only clauses with ℓ = 2, we have y∗j = 1/2, and the algorithms would be
the equivalent.

� For clauses with ℓ = 1, LP rounding is usually better.

For the Best-of-Rounding algorithm, we run once simple rounding and once LP rounding.
From the two solutions, we return the one that yields the higher value.

Theorem 42. Best-of-Rounding has approximation ratio 4/3.

Proof. We underestimate the expected weight of the final solution of the algorithm: Assume
that each of the two solutions is chosen uniformly at random with probability 1/2.

Then for Wi we obtain

E[Wi] ≥
1

2
·
(
1− 1

2ℓ

)
· wi +

1

2
·

(
1−

(
1− 1

ℓ

)ℓ
)
· z∗i · wi

≥ wi · z∗i ·
1− 1

2ℓ
+ 1−

(
1− 1

ℓ

)ℓ
2

≥ wi · z∗i ·
3

4

since 1− 1
2ℓ
+ 1−

(
1− 1

ℓ

)ℓ ≥ 3/2 for all ℓ ≥ 1.
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Hence, overall

E

[ ∑
i satisfied

wi

]
=

k∑
i=1

E[Wi] ≥
3

4
·

k∑
i=1

wi · z∗i ≥
3

4
·
∑
i∈C∗

wi .

Finally, let us inspect the integrality gap of the LP relaxation of ILP (5.8). Consider the
following instance:

(x1 ∨ x2), (x1 ∨ x̄2), (x̄1 ∨ x2), (x̄1 ∨ x̄2)

where the weights of all clauses are wi = 1. The fractional optimum has total weight 4, for
integral solutions the best value is 3. Hence, the integrality gap is at least 4/3. It is also at
most 4/3 (Why?).

5.3.6 Routing and Path Selection

Consider the Path Selection problem, a basic problem in computer networks. We want
to route a given set of messages or packets and minimize the overlap of the chosen routes.

� Directed graph G = (V,E)
� r commodities given by source nodes s1, . . . , sr and sink nodes t1, . . . , tr in G
� A path system is a set of r paths {P1, . . . , Pr}, where Pi starts in si and ends in ti
� Congestion of a path system is the maximum number of paths any edge e ∈ E is
contained in, i.e., maxe∈E |{i | e ∈ Pi}|

� Goal: Find a path system with smallest congestion

[Pic: Example, graph, sources and sinks, path system, congestion]

We construct an ILP formulation:
� Variable xi(e) for each i = 1, . . . , r and e ∈ E. Interpretation: xi(e) = 1 if Pi uses e, 0
otherwise.

� We formulate a necessary constraint Ci,w for each node w ∈ V and each commodity i:

∑
e : e starts in w

xi(e)−
∑

e : e ends in w

xi(e) =


0 w ̸= si, ti,

1 w = si,

−1 w = ti.

(5.9)

For each node w ̸= si, ti, path Pi arrives at and leaves from the node the same number
of times. For the source si, path Pi has to leave exactly one more time that it returns
to si. Pi comes to ti exactly one more time than it leaves ti.

� Minimize the objective function maxe∈E
∑r

i=1 xi(e), which is not linear. We express
this as linear function with additional constraints.

ILP for Path Selection:

Minimize W

subject to
r∑

i=1

xi(e) ≤ W for each e ∈ E

Constraints Ci,w in (5.9) for each i = 1, . . . , r, w ∈ V
xi(e) ∈ {0, 1}

(5.10)
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Algorithm 24: Randomized Rounding for Path Selection

1 Input: Directed graph G = (V,E) including sources s1, . . . , sr and sinks t1, . . . , tr

2 x∗ ← optimal solution of LP relaxation of (5.10)
3 for each commodity i = 1, . . . , r do
4 Decompose x∗

i into paths Pi,1, Pi,2, . . . with values αi,1, αi,2, . . . resp.
5 Choose Pi,j with probability αi,j

6 return path system with the chosen path for each commodity

The LP relaxation is obtained by replacing xi(e) ∈ {0, 1} by 0 ≤ xi(e) ≤ 1 for each e ∈ E.

How to round this LP? Where are the paths in the optimal solution x∗?
� x∗ results in a flow for commodity i:
→ Source si emits a flow of 1, target ti takes in a flow of 1.
→ For every other node w ̸= si, ti, we have “flow conservation”.
→ Every edge has non-negative flow and a flow capacity of 1.

� There must be at least one path from si to ti of edges with non-negative flow.
� Pick an arbitrary such path, denote it by Pi,1. Let αi,1 = mine∈Pi,1

xi(e).
� Decrease by α1 all xi(e) for e ∈ Pi,1 (all remain non-negative, at least one becomes 0).
� This decreases overall flow in-/outgoing at source/sink to 1 − αi,1, resp. As long as
remaining flow out of si is non-zero, argument can be repeated.

� Repeated application results in a path decomposition of x∗ with paths Pi,1, Pi,2, . . . and
flow values αi,1, αi,2, . . .

� The process terminates after at most |E| repetitions.
� Note:

∑
j αi,j = 1 and αi,j ∈ [0, 1]. The values αi,j represent a probability distribution

over paths Pi,j.

[Pic: Example network, flow, paths Pi,j, values for αi,j]

In Algorithm 24, we use the values αi,j for rounding. The resulting algorithm obtains a good
performance in congested networks, in which the optimal congestion W ∗ is not too small.

Theorem 43. Let W ∗ be the smallest congestion of any path system. With probability at
least 1− ε, Algorithm 24 obtains a path system with congestion at most

W ∗ +
√
3 ·W ∗ · ln(n2/ε) .

Proof. We first consider a single edge e and the number of paths going over e.
� For each path Pi we consider a random variable Xe

i

� Xe
i = 1 if Pi is chosen to go over e, and 0 otherwise.

� The (random) number of paths going over e is W e =
∑r

i=1 X
e
i .

� Clearly, for path Pi we have

Pr[Xe
i = 1] =

∑
j:e∈Pi,j

αi,j ≤ x∗
i (e).
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� The expected congestion of edge e is

E[W e] =
r∑

i=1

∑
j:e∈Pi,j

αi,j ≤
r∑

i=1

x∗
i (e) ≤ W ∗

f ,

where W ∗
f = maxe

∑
i x

∗
i (e) is the optimal congestion of the fractional optimum x∗.

� Hence, in expectation every edge has congestion at most W ∗
f .

� What is the probability that the actual congestion significantly exceeds its expectation?
Note that for edge e, the Xe

i are independent Bernoulli variables. For W e we can apply
a Chernoff bound:

Pr
[
W e ≥ (1 + δ)W ∗

f

]
≤ e−W ∗

f ·δ
2/3 .

� We set

δ =

√
3 · ln(n2/ε)

W ∗
f

and use a union bound to capture the probability that the maximum congestion of any
edge e exceeds the bound:

Pr

[
max
e∈E

W e ≥ (1 + δ)W ∗
f

]
≤
∑
e∈E

Pr
[
W e ≥ (1 + δ)W ∗

f

]
≤
∑
e∈E

e−W ∗
f ·δ

2/3 = |E| · ε
n2

< ε .

� Hence, with probability at most ε the rounded solution has a congestion of at least
(1 + δ)W ∗

f . In turn, with probability at least 1− ε, the congestion is at most

(1 + δ) ·W ∗
f = W ∗

f +
√

3 ·W ∗
f · ln(n2/ε) < W ∗ +

√
3 ·W ∗ · ln(n2/ε) .

5.3.7 Unrelated Machine Scheduling

Unrelated Machine Scheduling generalizes Makespan Scheduling to non-identical
machines:

� m (not necessarily identical) machines, n tasks
� Task i ∈ [n] has processing time pij ∈ N on machine j ∈ [m]
� Assign each task i (completely) to some machine j ∈ [m]
� Load of machine j is ℓj =

∑
i on j pij

� Maximum load maxj∈[m] ℓj is the makespan of the assignment
� Goal: Assign tasks to machines to minimize the makespan

Representation: Complete bipartite graph G, node sets are tasks and machines, edge
weights are processing times. Assignment is a one-to-many matching in G.

[Pic: Complete bipartite, edge-weighted graph. Assignment as one-to-many matching]
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The assumption that all pij ∈ N is w.l.o.g.: We could allow pij ∈ Q for all i ∈ [n], j ∈ [m],
since technically we assume that the input is representable by a finite bit vector on a Turing
machine. When we multiply each processing time with the common denominator of all times,
we obtain pij ∈ N. This multiplication increases the representation size of the processing
times only by a polynomial factor.

Towards an ILP for Unrelated Machine Scheduling, we assume xij = 1 if task i is
assigned to machine j, and 0 otherwise. Our ILP reads

Minimize t

subject to
n∑

i=1

xijpij ≤ t for each j ∈ [m]

m∑
j=1

xij = 1 for each i ∈ [n]

xij ∈ {0, 1} for each i ∈ [n], j ∈ [m]

(5.11)

Some remarks:
� First constraints: t is at least the makespan (minimization yields t = makespan)
� Second constraints: Every task i assigned to exactly one machine.
� LP relaxation: Replace xij ∈ {0, 1} by xij ≥ 0 (then second constraints imply xij ≤ 1)
� The LP relaxation has a huge integrality gap2!

Let us apply the LP in a somewhat orthogonal way. We guess an upper bound T for the
makespan and prune “assignment edges” (i, j) with pij > T . None of these edges can be
used in an integral assignment with makespan T .

Now given the upper bound T on the makespan, let ET = {{i, j} ∈ [n]× [m] | pij ≤ T} be
the pruned set of assignment edges. We find a feasible fractional assignment in the pruned
graph GT = ([n]∪ [m], ET ). The following set of inequalities describe the polytope of feasible
fractional assignments with makespan at most T in the pruned instance. We denote it by
LP (T ): ∑

i:{i,j}∈ET

xijpij ≤ T for each j ∈ [m]∑
j:{i,j}∈ET

xij = 1 for each i ∈ [n]

xij ≥ 0 for each {i, j} ∈ ET

(5.12)

Consider Algorithm 25. Some comments:
� First, build a greedy schedule for a simple upper bound Tg on the optimal makespan.
� Indeed, then Tg/m must be a lower bound on the optimal makespan (Exercise)
� Then find the smallest integer T ∗, for which LP (T ) (5.12) has a feasible solution, by
using binary search for T over the interval [Tg/m, Tg].

� Pick a corner x of polytope LP (T ∗), assign all tasks that are integrally assigned in x.

2Instance with single task and p1j = 1 for every machine j ∈ [m]. Fractional optimum breaks task into
m pieces of x1j = 1/m, makespan is 1/m. Integrality gap at least m.



5.3. ROUNDING AND APPROXIMATION 89

Algorithm 25: Parametric Pruning for Unrelated Machine Scheduling

1 Input: Tasks, machines, processing times

2 for each task i do
3 assign i greedily to ji = argminj∈[m] pij with smallest processing time for i

4 Let Tg denote the makespan of the greedy assignment
5 Perform binary search over the interval [Tg/m, Tg] to find smallest integer T ∗, for

which LP (T ) (5.12) has a feasible solution
6 x← corner of LP (T ∗)
7 for each entry xij = 1 do assign task i to machine j
8 Construct graph H(x) of fractionally assigned tasks and their machines
9 M ← perfect matching in H(x)

10 for each {i, j} ∈M do assign task i to machine j
11 return assignment of tasks to machines

� For the remaining tasks, round the solution by constructing a graph H(x) composed
of these tasks and the machines they are fractionally assigned to.

� Find a perfect matching M of tasks and machines in H(x), assign tasks as in M .

The main result in this section is the following.

Theorem 44. Algorithm 25 runs in polynomial time and has approximation ratio 2.

A coarse upper bound on the running time of the binary search are O
(
log
∑

i,j pij

)
rounds

(since [Tg/m, Tg] ⊂ [0,
∑

i,j pij]). This is at most linear in the input size – the representation
size of processing times already is at least

∑
i,j log pij. The feasibility test of LP (T ) and the

remaining steps can be executed in polynomial time. Hence, the running time is polynomial.

Towards a proof of approximation, we first establish useful properties for corner solutions x
of polytope (5.12). We then discuss the definition of H(x) and show it always contains a
perfect matching. As the last step, we prove the approximation ratio.

Lemma 18. Every corner x of LP (T ) has at most n+m non-zero variables.

Proof. We denote by r = |ET | the number of variables in LP (T ).
� Definition of corner: x satisfies r linearly independent constraints exactly
� n+m constraints of the first two types in (5.12)
� At least r − (n+m) constraints “xij ≥ 0” fulfilled exactly
� At least r − (n+m) many xij = 0, so at most n+m non-zero variables.

Corollary 6. In every corner x, at least n−m tasks are assigned integrally.

Proof. We denote by k = |{ {i, j} ∈ ET | xij > 0}| the number of non-zero variables.
� Previous lemma: k ≤ n+m
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� Task i fractional → at least two xij > 0. Task i integral → one xij > 0.
� Suppose we have α fractional and n− α integral tasks.
� Then 2α + n− α ≤ k ≤ n+m, which implies α ≤ m

Number of integrally assigned tasks is n− α ≥ n−m.

We define the notion of a pseudo-forest:
� A pseudo-tree is a connected graph with k vertices and at most k edges.
→ It is either a tree or a tree plus one edge.

� A pseudo-forest is a graph where every connected component is a pseudo-tree.

[Pic: Example pseudo-tree, pseudo-forest]

We define two graphs. In G(x) = ([n] ∪ [m], E(x)) we have edges E(x) = {{i, j} ∈ ET |
xij > 0} corresponding to non-zero assignments of x. In H(x) we restrict G(x) to tasks
that are fractionally assigned in x, i.e., to tasks i for which there are at least two entries
0 < xij < 1. H(x) contains all fractionally assigned tasks, their incident edges and their
adjacent machines from G(x).

We first consider G(x).

Lemma 19. In every corner x, the graph G(x) is a pseudo-forest.

Proof. Consider a connected component C of G(x).
� Restrict x to xC containing only entries for the machines and tasks of C
� Let x−C be the remaining entries of x, i.e., x = (xC ,x−C)
� We define LPC(T ) as (5.12) restricted to C – more precisely, in LPC(T ) we have only
the constraints for tasks and machines of C, where in each constraint we sum only over
the variables xij for i and j both in C.

� Clearly, xC is a feasible solution for LPC(T ).
� We claim that xC is also a corner of LPC(T ).

� Suppose not – xC is an interior solution of LPC(T ). Then xC = λx
(1)
C + (1− λ)x

(2)
C for

two feasible solutions x
(1)
C and x

(2)
C for LPC(T )

� The extensions x(1) = (x
(1)
C ,x−C) and x(2) = (x

(2)
C ,x−C) are feasible for LP (T )

� Hence, x = λx(1) + (1− λ)x(2), so x is an interior solution for LP (T ) and not a corner
– a contradiction!

This shows that for every connected component C, the vector xC is a corner of LPC(T ).
� Suppose C has nC tasks, mC machines, so nC +mC nodes.
� xC is corner solution, so by Lemma 18, xC has at most nC +mC non-zero variables.
� Edges in C are non-zero variables → C has at most nC +mC edges and is connected
� C is a pseudo-tree!

Every component of G(x) is a pseudo-tree.

Now consider H(x).

Lemma 20. In every corner x, H(x) is a pseudo-forest and has a perfect matching M .

Proof. First we show it is a pseudo-forest:
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� Each task assigned integrally in x has exactly one incident edge in G(x).
� Remove these tasks with their edges. This results in H(x).
� For every component of G(x), the number of edges removed equals the number of nodes
(tasks) removed.

� Hence, every component of H(x) remains a pseudo-tree.

Now consider a component of H(x).
� Each task has degree at least 2 in H(x). All leaves must be machines.
� Construct a matching M iteratively “bottom-up”:
Match a leaf machine to the single incident task. Remove both machine and task.

� Thereby, at each point in time, all leaves remain machines.
� Finally, either all tasks are matched to unique machines or we encounter a cycle.
� Cycle is even (since H(x) is bipartite). Match tasks and machines alternatingly.

Hence, H(x) indeed has a perfect matching.

[Pic: Example graph, build matching “bottom-up” in each pseudo-tree]

Finally, we complete the proof of Theorem 44.

Proof of Theorem 44. Consider the optimal makespan T ∗
I ∈ N of any integral assignment.

� The pruning for LP (T ) removes options, all of which are impossible for an integral
assignment of makespan T .

� Any optimal integral assignment of makespan TI is a feasible solution for LP (TI).
� T ∗ is the smallest integer s.t. LP (T ) is feasible → we have T ∗ ≤ T ∗

I .

Consider the makespan T (x) of the corner x computed by our algorithm.
� Clearly, T (x) ≤ T ∗, since x is feasible for LP (T ∗).
� Assigning only integral tasks of x yields ℓj ≤ T (x) for each machine by restriction
� Using the perfect matching M , each machine j receives at most one more task i
� Processing time of this task is pij ≤ T ∗, because {i, j} ∈ ET ∗ survived the pruning

In total, every machine has load ℓj ≤ T (x) + T ∗ ≤ 2 · T ∗ ≤ 2 · T ∗
I .
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Chapter 6

Primal-Dual Algorithms

6.1 Duality

Linear programs have a possibly surprising duality structure – they always arise in pairs.
The dual LP results from the task to find good bounds on the optimal solution value of an
LP (here called the primal LP). Indeed, finding the best bound on the optimal value for
the primal LP can be formulated as another, the dual LP. Primal and dual LPs are tightly
connected. Duality yields a lot of elegant structure that is very useful for the design of
approximation algorithms.

Suppose we want to find a good lower bound on the optimal value of this (primal) LP:

Minimize 7x1 + x2 + 5x3

subject to x1 − x2 + 3x3 ≥ 10
5x1 + 2x2 − x3 ≥ 6

x1, x2, x3 ≥ 0

(6.1)

We use the constraints to generate lower bounds:
� The first constraint implies a simple lower bound of 10 for any feasible solution

10 ≤ x1 − x2 + 3x3 ≤ 7x1 + x2 + 5x3

since all x1, x2, x3 are non-negative.
� Combining two constraints, we can increase the bound to 16:

10 + 6 ≤ (x1 − x2 + 3x3) + (5x1 + 2x2 − x3) = 6x1 + x2 + 2x3 ≤ 7x1 + x2 + 5x3

� Looking into the coefficients more closely, we can strengthen the bound to 26:

2 · 10 + 1 · 6 ≤ 2 · (x1 − x2 + 3x3) + 1 · (5x1 + 2x2 − x3) = 7x1 + 5x3 ≤ 7x1 + x2 + 5x3

What is the optimal set of coefficients y1, y2 such that

y1 · 10 + y2 · 6 ≤ y1 · (x1 − x2 + 3x3) + y2 · (5x1 + 2x2 − x3) ≤ 7x1 + x2 + 5x3?

93
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� y1, y2 ≥ 0, since otherwise the inequalities would flip.
� y1 + 5y2 ≤ 7: Our lower bound shall count less of x1 ≥ 0 than the objective function.
� Similar constraints for x2 and x3.
� This yields a new optimization problem.

Find the best coefficients to maximize the lower bound for the optimal value of LP (6.1).

Maximize 10y1 + 6y2

subject to y1 + 5y2 ≤ 7
−y1 + 2y2 ≤ 1
3y1 − 2y2 ≤ 5

y1, y2 ≥ 0

(6.2)

This is the dual LP for the (primal) LP (6.1). Some remarks:
� Coefficients in objective of dual = coefficients in right-hand sides of primal.
� Coefficients in right-hand sides of dual = coefficients in objective of primal.
� Rows of primal constraint matrix = columns of dual constraint matrix.
� Minimization in primal → Maximization in dual
� By applying a similar reasoning to the dual LP (6.2), we recover the primal LP 6.1.
The dual of the dual is the primal!

More generally, consider an LP in canonical form with c ∈ Qn, b ∈ Qm, A ∈ Qm×n, in which
we also have x ≥ 0. Then, by the same reasoning as above, the pairs of primal and dual are

Minimize cTx

subject to Ax ≥ b
x ≥ 0

Maximize yTb

subject to yTA ≤ cT

y ≥ 0

(6.3)

The set of dual constraints can be written as (yTA)T ≤ (cT )T , which is ATy ≤ c, the form
we chose in LP (6.2). We will stick to the former notation for the next argument.

How are primal and dual solutions related?
1. For every solution of the primal LP we have x ≥ 0 and Ax ≥ b. For every dual

solution we have y ≥ 0. This implies yTAx ≥ yTb.
2. For every solution of the dual LP we have y ≥ 0 and yTA ≤ cT . For every primal

solution, we have x ≥ 0. This implies yTAx ≤ cTx.
3. Plugging together the two bounds, we see that

yTb ≤ yTAx ≤ cTx.

The value of every dual solution is a lower bound on the value of every primal solution!

[Pic: primal solution values, dual solution values]

What if the maximization LP in (6.3) is the primal LP?
� We would want an upper bound on the optimal objective value.
� Use a linear combination of the constraints to generate an upper bound.
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� Dual LP: Find an optimal combination of constraints for the smallest upper bound.
� Same three steps as above show: The dual is the minimization LP in (6.3).
� The dual of the dual is the primal!

We generically obtain dual linear programs by the following “recipe”. A minimization LP
turns into a maximization LP and vice versa. We exchange the role of right-hand side b and
objective function c. Variables in one LP correspond to constraints in the other:

� yi ≥ 0 corresponds to constraint aix ≥ bi,
� yi ≤ 0 corresponds to constraint aix ≤ bi, and
� yi free corresponds to constraint aix = bi.

and
� xj ≥ 0 corresponds to constraint yTaj ≤ cj,
� xj ≤ 0 corresponds to constraint yTaj ≥ cj, and
� xj free corresponds to constraint yTaj = cj.

Here aj is the column vector of A with coefficients for variable xj.

Schematically primal and dual relate to each other as follows:

Minimize cTx

subject to aix ≥ bi
aix ≤ bi
aix = bi
xj ≥ 0
xj ≤ 0
xj free

←→

Maximize yTb

subject to yi ≥ 0
yi ≤ 0
yi free

yTaj ≤ cj
yTaj ≥ cj
yTaj = cj

(6.4)

Note that the transformation goes in both directions – it works from “left to right” and
from “right to left” (i.e., the dual of the dual is the primal).

Examples: An LP in standard form

Minimize 13x1 + 10x2 + 6x3

subject to 5x1 + x2 + 3x3 = 8
3x1 + x2 = 3
x1, x2, x3 ≥ 0

Minimize [ 13 10 6 ] ·

 x1

x2

x3



s.t.

[
5 1 3
3 1 0

]
·

 x1

x2

x3

 =

[
8
3

]
x ≥ 0

for which the dual becomes

Maximize 8y1 + 3y2

subject to 5y1 + 3y2 ≤ 13
y1 + y2 ≤ 10

3y1 ≤ 6
y1, y2 free

Maximize
[
y1 y2

]
·
[
8
3

]

s.t.
[
y1 y2

]
·
[
5 1 3
3 1 0

]
≤ [ 13 10 6 ]
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Another pair of primal and dual LPs

Minimize 7x1 − 11x2

subject to x1 + 2x2 ≥ 1
2x1 + x2 = 5
3x1 + x2 ≤ −5

x1 ≤ 0

Maximize y1 + 5y2 − 5y3

subject to y1 + 2y2 + 3y3 ≥ 7
2y1 + y2 + y3 = −11

y1 ≥ 0
y3 ≤ 0

along with a schematic view of the transformation:

x1 ≤ 0 x2 free bi and

constraint

A

y1 ≥ 0 1 2 ≥ 1

y2 free 2 1 = 5

y3 ≤ 0 3 1 ≤ −5

cj and ≥ 7 = −11
constraint

We generalize the lower bounding argument from above to arbitrary LPs. Consider any
solution x for a minimization LP and solution y for the corresponding maximization LP.

1. Consider the combination of constraint i = 1, . . . ,m with aix and bi, and the corre-
sponding variable yi. The direction of the constraint inequality and (non-)negativity
of yi ensure that we always have

yi · (aix− bi) ≥ 0.

Summing over all these inequalities, we see that

m∑
i=1

yi · (aix− bi) = yTAx− yTb ≥ 0

so yTb ≥ yTAx as in step 1. above.
2. For the combination of a variable xj for j = 1, . . . , n and constraint with yTaj and

cj, the direction of the constraint inequality and (non-)negativity of yi ensure that we
always have

(cj − yTaj) · xj ≥ 0.

Summing over all these inequalities, we see that

n∑
j=1

(cj − yTaj)xj = cTx− yTAx ≥ 0

so yTAx ≤ cTx as in step 2. above.



6.1. DUALITY 97

3. Overall, this implies yTb ≤ yTAx ≤ cTx as above. Hence, the value of every solution
of the primal [dual] minimization LP lower bounds the value of every solution of the
dual [primal] maximization LP, resp.

Lemma 21 (Weak Duality). Consider a primal minimization LP. The objective value of
every dual solution y is a lower bound on the objective value of every primal solution x.

Observations and consequences:
� The dual of the dual LP is the primal LP.
� If we transform the primal LP into an equivalent one (e.g. into standard form), then
the dual of the transformed primal is equivalent to the dual of the original primal.

� If primal and dual solutions x and y have the same objective function value yTb =
cTx, then Lemma 21 implies they must be optimal solutions for their respective LPs.

� Lemma 21 also implies:
Primal unbounded ⇒ Dual infeasible.
Dual unbounded ⇒ Primal infeasible.

The result in Lemma 21 can be strengthened to the main result in this section.

Theorem 45 (Strong Duality). If a primal LP is bounded and has an optimal solution x∗,
then the dual LP is bounded and has an optimal solution y∗. The optimal solutions have the
same objective value

(y∗)Tb = cTx∗.

Possible scenarios for primal and dual LPs:

Dual

bounded unbounded infeasible

bounded
√

Primal unbounded
√

infeasible
√ √

For illustration an example, where both primal and dual LPs are infeasible:

Minimize x1 + 2x2

subject to x1 + x2 = 1
2x1 + 2x2 = 3

Maximize y1 + 3y2

subject to y1 + 2y2 = 1
y1 + 2y2 = 2

Complementary Slackness

A very useful property is complementary slackness of constraints and variables in primal
and dual LPs. Intuitively, a (primal/dual) variable can only be non-zero if the corresponding
(dual/primal) constraint holds with equality.
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More formally, consider a pair of primal and dual programs. In the construction, we postu-
lated that for primal and dual LPs we have

(cj − yTaj) · xj ≥ 0 and yi · (aix− bi) ≥ 0

for all j = 1, . . . , n and i = 1, . . . ,m, resp. Weak duality in Lemma 21 follows by observing
the consequence

cTx− yTb =
n∑

j=1

(cj − yTaj) · xj +
m∑
i=1

yi · (aix− bi) ≥ 0 .

By the inequalities above, the ≥ 0 condition holds for each of the n+m summands individ-
ually. But for optimal x∗ and y∗, strong duality implies cTx∗ − (y∗)Tb = 0. This holds if
and only if all the individual summands satisfy

(cj − (y∗)Taj) · x∗
j = 0 and y∗i · (aix

∗ − bi) = 0

for all j = 1, . . . , n and i = 1, . . . ,m, resp.

This implies the complementary slackness conditions for optimal solutions x∗ and y∗:
Primal: For each j we have x∗

j = 0, or (y∗)Taj = cj, or both. If the optimal primal solution
has x∗

j ̸= 0, then the corresponding dual constraint holds exactly. If the constraint
does not hold exactly, we must have x∗

j = 0.
Dual: For each i we have y∗i = 0, or aix

∗ = bi, or both. If the optimal dual solution has
y∗i ̸= 0, then the corresponding primal constraint holds exactly. If the constraint does
not hold exactly, we must have y∗i = 0.

Finally, for arbitrary primal and dual solutions, we define the duality gap as cTx− yTb.

6.2 Structure

Primal-dual algorithms are used to compute approximate solutions for problems that can be
formulated as integer linear programs. The main ideas are as follows:

� Iteratively construct vectors x and y and decrease the duality gap
� Final vectors x and y are feasible primal and dual solutions
� Final vector x should be an integer vector
� If cTx ≤ α · yTb, for some α > 0, then x is an α-approximate solution for the (real,
integer) problem, since by strong duality

cTx ≤ α · yTb = α · cTx∗
LP ≤ α · cTx∗

ILP

Further remarks:
� Many primal-dual algorithms maintain primal complementary slackness, i.e., they as-
sign xj ̸= 0 only if the dual constraint yTaj = cj. In contrast, dual complementary
slackness is usually much less relevant.
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� The LP (relaxation) is usually not solved to optimality. We only try to obtain pairs of
feasible primal and dual solutions with small duality gap.

� In many problems, the dual variables yi have a combinatorial interpretation. This can
sometimes be used to obtain combinatorial algorithms without any use of LPs.

� There are primal-dual algorithms for many problems discussed above (e.g., for Set
Cover, Vertex Cover, Facility Location, k-Median, Max-Matching, etc.)

We discuss a possible high-level schema for primal-dual algorithms.
� Primal: min cTx s.t. Ax ≥ b and x ≥ 0.
� Dual: maxyTb s.t. yTA ≤ cT and y ≥ 0.
� W.l.o.g. we assume A ≥ 0, b ≥ 0, c ≥ 0

General structure:
1. Start with x = y = 0.

x is not a feasible primal solution, but y is a feasible dual solution.
2. We want to maintain primal complementary slackness: (cj − yTaj) · xj = 0.
3. Raise dual variables y until some constraint yTak ≤ ck gets satisfied exactly.
4. Raise xk to satisfy (further) constraints of the primal
5. Repeat steps 3. and 4. until x is a feasible primal solution

6.3 Set Cover

6.3.1 Primal-Dual Algorithm

Recall the Weighted Set Cover problem from Section 5.3.3. We use a binary variable xj

to indicate if set Sj should be in the set cover or not. Then the LP relaxation (primal) and
its dual LP are

Min
n∑

j=1

wjxj

s.t.
∑
j:e∈Sj

xj ≥ 1 for all e ∈ E

xj ≥ 0 for all j ∈ [n]

Max.
∑
e∈E

ye

s.t.
∑
e∈Sj

ye ≤ wj for all j ∈ [n]

yi ≥ 0 for all e ∈ E

(6.5)

Consider the primal-dual algorithm for Weighted Set Cover (Algorithm 26). Clearly, the
algorithm can be implemented in polynomial time.

� We interpret the dual variable ye as a “payment”. Element e pays to “buy” sets that
include e. Initially, no element pays anything, and the cover C is empty.

� Then we iteratively raise the payment of an uncovered element e until the payments
suffice for the cost wj of a set Sj that includes e. This set is bought and included into
the cover C.

� Note, however, that e offers her payment ye to every set that includes e. More formally,
ye is counted in every dual constraint for all sets Sj with e ∈ Sj.
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Algorithm 26: Primal-Dual Algorithm for Weighted Set Cover

1 Input: Set system S, set costs wj ≥ 0

2 Initialize C ← ∅, x← 0, and y← 0
3 while there is e ∈ E not covered by sets in C do
4 Increase ye to the maximal value allowed by dual contraints:

ye ← min
j:e∈Sj

wj −
∑
e′∈Sj

e′ ̸=e

ye′


5 Let Sk be a set for which the dual constraint becomes tight by this increase

// Primal Compl. Slackness: Tight constraint allows xk > 0.
6 Set xk ← 1 and add C ← C ∪ {k}
7 return C

� Later in the algorithm, more sets including e might be bought to cover other elements,
but e needs to pay ye for each of them, too – the other element only contributes what
is needed to increase

∑
e′∈Sj

ye′ to wj.
� A single payment ye is a lower bound of what it costs to cover e. But how much do we
overpay by the final cost of C in the algorithm?

[Pic: Some examples with output of the algorithm]

Recall from Section 5.3.3 the definition of f = maxe∈E |{j | e ∈ Sj}| the maximum number
of sets that a single element is contained in. Similar to the deterministic rounding algorithm
in Corollary 5, we obtain an approximation ratio of f .

Theorem 46. Algorithm 26 has approximation ratio at most f .

Proof. Consider the total payments of all elements.
� The total payments are exactly the total cost of the set cover, since elements pay
exactly for each set in the cover

n∑
j=1

xjwj =
∑
j∈C

∑
e∈Sj

ye .

� By the definition of f , the total payments are at most∑
j∈C

∑
e∈Sj

ye ≤ f ·
∑
e∈E

ye ,

since every single payment ye can go to at most f sets.

Thus, with optimal primal and dual solutions we see

n∑
j=1

xjwj =
∑
j∈C

∑
e∈Sj

ye ≤ f ·
∑
e∈E

ye ≤ f ·
∑
e∈E

y∗e = f ·
∑
j

x∗
jwj ,
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i.e., the total cost of the computed cover C is at most f times the cost of an optimal (primal)
solution x∗ to the LP relaxation.

The algorithm maintains primal complementary slackness conditions. And the dual ones?
� For the final solutions x and y, we cannot have dual conditions as well – then the
solutions would be optimal for the LPs, which is usually impossible when x is integral.

� However, instead of the exact ones

ye > 0 ⇒ ae · x = be

we have approximate versions or the dual conditions

ye > 0 ⇒ ae · x ≤ f · be

since be = 1 and ae · x =
∑

j:e∈Sj
xj counts the number of sets in which element e is

contained (at most f by definition).

The ratio of violation in dual complementary slackness and the approximation ratio coincide.
This is no coincidence and a general condition!

Theorem 47. Suppose we have primal and dual solutions x and y such that for the com-
plementary slackness conditions, primal ones hold exactly:

xj > 0 ⇒ yTaj = cj

and dual ones hold approximately with a ratio of β:

yi > 0 ⇒ ai · x ≤ β · bi

Then x is a β-approximate solution for the primal LP.

Proof. Exercise.

6.3.2 Greedy Algorithm

Let us also consider a simple greedy algorithm for Set Cover (Algorithm 27). It can
be analyzed using primal-dual arguments, although it does not directly follow our standard
schema for primal-dual algorithms.

Notable facts for the algorithm:
� Clearly implementable in polynomial time.
� Obtains an approximation ratio of at most Hm (the m-harmonic number, at most
1 + lnm, even when f is large) and is deterministic (in contrast to randomized
rounding in Algorithm 23)

� The ratio can be as high as Hm even in instances of Vertex Cover with f = 2.
� In general, Set Cover is NP-hard to approximate within a ratio of (1 − ε) lnm, for
every constant ε > 0. Hence, ratio is optimal unless P = NP.
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Algorithm 27: Greedy Algorithm for Weighted Set Cover

1 Input: Set system S, set costs wj ≥ 0

2 Initialize C ← ∅, EC ← ∅
3 while U ̸= E do

4 Determine set Sk that minimizes the cost per uncovered element
wk

|Sk \ EC |
5 Add C ← C ∪ {k} and update EC ← EC ∪ Sk

6 return C

Theorem 48. Algorithm 27 has approximation ratio at most Hm ≤ 1 + lnm.

Proof. Reconsider primal and dual LPs (6.5) above.
� Suppose element e ∈ E is covered first in iteration t by the inclusion of set Sj into C.
Set the payment of e to

pe =
wj

|Sj \ Et
C |

,

where Et
C denotes the set EC in iteration t.

� Note that, overall,
∑

e∈E pe =
∑

j∈C wj.
� Set

ye = pe/Hm ,

where Hm =
∑m

i=1 1/i ≤ 1 + lnm is the m-th harmonic number.
� Consider any single set Sk. We denote r = |Sk|. Number the r elements e ∈ Sk in
non-decreasing order of the iteration when they are first covered.

� In the beginning of the iteration t where some element eℓ gets covered, we have at least
r − (ℓ− 1) elements from Sk that remain uncovered.

� Suppose eℓ gets covered by the inclusion of some Sj into C. Then

peℓ =
wj

|Sj \ Et
C |
≤ wk

|Sk \ Et
C |
≤ wk

r − ℓ+ 1
,

since the algorithm chooses Sj to minimize the cost per uncovered element.
� Thus, for the sum of all elements from Sk

r∑
ℓ=1

peℓ ≤ wk ·
r∑

ℓ=1

1

r − ℓ+ 1
= wk ·Hm .

� This implies ∑
e∈Sk

ye =
∑
e∈Sk

pe
Hm

≤ wk ,

i.e., the dual constraint for Sk is fulfilled. y is a feasible dual solution!

Now interpret the set cover C as a primal solution x by setting xj = 1 iff j ∈ C. Applying
duality and using optimal primal and dual solutions we see∑

j∈C

wj =
n∑

j=1

xjwj =
∑
e∈E

pe = Hm ·
∑
e∈E

ye ≤ Hm ·
∑
e∈E

y∗e = Hm ·
∑
e∈E

x∗
jwj ,
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i.e., the total cost of the computed cover C is at most Hm times the cost of an optimal
(primal) solution x∗ to the LP relaxation.

6.4 Shortest Path

We consider the standard single-source single-sink Shortest Path problem:
� G = (V,E) directed, connected
� ℓe ≥ 0 non-negative edge length for each e ∈ E
� Source node s ∈ V , target node t ∈ V
� Goal: Compute a directed s-t-path P that minimizes sum of edge lengths

∑
e∈P ℓe

[Pic: Example]

What is a suitable ILP for Shortest Path? We consider the notion of an s-t-cut: A cut
is given by a subset W ⊂ V of vertices such that s ∈ W and t ̸∈ W . It splits V into a pair
of vertex sets (W,V \W ), one containing s and the other t.

Consider an s-t-cut given by set W .
� Main observation: Every s-t-path P must “cross the cut” at least once.
� There is at least one edge (u, v) ∈ P with u ∈ W and v ∈ V \W .
� We denote by δ(W ) = {(u, v) | u ∈ W, v /∈ W} the set of edges crossing the cut.
� We introduce a binary variable xe ∈ {0, 1} for each e ∈ E, where xe = 1 means e ∈ P
(and xe = 0 otherwise).

� Formally, our main observation is
∑

e∈δ(W ) xe ≥ 1.

[Pics: cut (W,V \W ), set δ(W ), path crossing the cut]

Let S = {W | s ∈ W, t ̸∈ W} be the set containing all s-t-cuts. The ILP is

Min
∑
e∈E

xeℓe

s.t.
∑

e∈δ(W )

xe ≥ 1 for all W ∈ S

xe ∈ {0, 1} for all e ∈ E

(6.6)

Lemma 22. There is an optimal solution x∗ of ILP (6.6) such that E(x∗) = {e ∈ E | x∗
e = 1}

is a shortest s-t-path.

Proof. Exercise.

The linear relaxation uses xe ≥ 0 in (6.6). Here is the dual of the linear relaxation:

Max
∑
W∈S

yW

s.t.
∑

W :e∈δ(W )

yW ≤ ℓe for all e ∈ E

yW ≥ 0 for all W ∈ S

(6.7)
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Algorithm 28: Primal-Dual Algorithm for Shortest Path

1 Input: Graph G, edge lengths ℓe, source s, target t

2 Initialize F ← ∅, x← 0, and y← 0
3 while F does not contain an s-t-path do
4 W ← {v ∈ V | v reachable from s via edges in F}
5 Increase yW to the maximal value allowed by dual constraints:

yW = min
e∈δ(W )

ℓe −
∑

W ′:e∈δ(W ′)
W ′ ̸=W

yW ′


6 Let e be an edge for which the dual constraint becomes tight by this increase

// Primal Compl. Slackness: Tight constraint allows xe > 0.
7 Set xe ← 1 and add F ← F ∪ {e}
8 return s-t-path in F

The primal (dual) has a possibly exponential number of constraints (variables) corresponding
to the number of s-t-cuts in G. But we never explicitly construct and solve these LPs!

Consider the primal-dual Algorithm 28 – it’s almost literally the same as Algorithm 26 for
Set Cover above! Some observations (c.f. the ones for Algorithm 26):

� We again interpret the dual variable yW as a payment. The edge lengths are “transfer
costs” to cross cuts along an edge e. Initially, we pay nothing and F is empty.

� Then we iteratively raise payments for some cut W that has not been crossed so far.
If payments suffice to buy an edge e ∈ δ(W ), this edge is bought and included into F .
Then all cuts W ′ with e ∈ δ(W ′) are crossed by e.

� Cut W offers its payment yW to all edges e′ ∈ δ(W ) simultaneously, i.e., yW is counted
in every dual constraint for all e′ ∈ δ(W ). In turn, when we buy edge e, we use all
payments yW ′ of cuts W ′ with e ∈ δ(W ′) (since e crosses all these cuts).

� Later in the algorithm, when some other e′ ∈ δ(W ′′) is bought to cross cut W ′′, then
possibly e′ ∈ δ(W ′′) ∩ δ(W ) (since cut edges can overlap), and we would (over-)use
payment yW for yet another edge e′.

� For Set Cover, this overuse of payments yields the violation of dual complementary
slackness and an approximation ratio of f . We show this isn’t a problem here!

[Pic: Cuts, edges, payments, re-using payment of cut W for an edge e′ ∈ δ(W ′′) ∩ δ(W )]

Lemma 23. The set F of edges is always a directed tree rooted in s.

Proof. A simple induction. Basis: True initially since F = ∅. Hypothesis: F is directed tree
rooted in s until iteration t. Step: In iteration t + 1, we connect the node set W of tree F
via some edge e to a node outside F . Hence, we extend F by e directed to a node outside
F . This shows that F ∪ {e} is also a directed tree rooted in s.

[Pic: Tree extension]
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The main result of this section is the following.

Theorem 49. Algorithm 28 computes an optimal solution to the single-source single-sink
Shortest Path problem.

Proof. Consider the final solution x and the final set F computed by the algorithm.
� For every e ∈ F we have xe = 1 and ℓe =

∑
W :e∈δ(W ) yW , i.e., primal complementary

slackness conditions.
� The algorithm terminates when there is an s-t-path P ⊆ F . Let xP be the primal
solution corresponding to P (xe = 1 if e ∈ P , and xe = 0 else). Then∑
e∈E

xP
e ℓe =

∑
e∈P

ℓe =
∑
e∈P

∑
W :e∈δ(W )

yW (primal compl. slackness)

=
∑
W∈S

∑
e∈P∩δ(W )

yW (grouping together each occurence of yW )

=
∑
W∈S

yW · |δ(W ) ∩ P |

� The last term can get large if P crosses some cut W many times, since then pay-
ment yW is overused. We want to show: P crosses W exaclty once if W has a
positive payment yW > 0, or formally, yW > 0 ⇒

∑
e∈δ(W ) x

P
e = 1. This is dual

complementary slackness!
� Consider a cut W that is crossed for the first time by path edge e ∈ P . When we
increased yW > 0, set W was the node set of tree F .

� Suppose we cross W by another edge e′ ∈ P later on. For this, there must be an edge
e′′ between e and e′ to bring P back to a node in W . Upon addition of e′′, set F stops
being a directed tree rooted in s – a contradiction.

In summary, we thus have∑
e∈E

xP
e ℓe =

∑
W∈S

yW · |δ(W ) ∩ P | =
∑
W∈S

yW

so primal solution xP and dual solution y have the same objective function values. They
must be optimal solutions for (I)LPs (6.6) and (6.7).

[Pic: P returns to W to cross the cut several times]

Observe that Algorithm 28 is simply a primal-dual interpretation of the well-known greedy
Dijkstra algorithm. Implementation in polynomial time is straightforward.

6.5 Facility Location

Reconsider the (metric) Facility Location problem from Section 4.4. There are sets F of
locations and C of clients. For each pair (i, j) ∈ C×F there is a distance d(i, j) ≥ 0, and for
each j ∈ F an opening cost fj ≥ 0. Distances form a metric. The goal is to open a subset
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Algorithm 29: Primal-Dual Algorithm for Facility Location

1 Input: Sets of clients C and facilities F , distances d, opening costs f

2 Initialize X ← ∅, t← 0, A← C
3 Initialize primal solution xij ← 0, yj ← 0, for all i ∈ C, j ∈ F
4 repeat
5 Each active client i ∈ A offers total payments of αi = t to each j ∈ F :
6 min(t, d(i, j)) to connection cost d(i, j), and
7 if yj = 0 closed, then βij = max(0, t− d(i, j)) to opening cost fj

8 Increase time t until the next event happens:
9 Event 1: t = d(i, j) for active i ∈ A and open j ∈ X

10 Event 2: Subset of clients pay for fj of some closed j ̸∈ X

11 if Event 1 happens then
// Compl. Slack: Connection paid allows xij > 0

12 set xij = 1, and remove A← A \ {i}
13 if Event 2 happens then
14 Aj = {i ∈ A | t ≥ d(i, j)} // active clients that contribute to fj

// Compl. Slack: Connection paid allows xij > 0 for each i ∈ Aj

// Compl. Slack: Opening paid allows yj > 0
15 if there is j′ ∈ X with d(j, j′) ≤ 2t then
16 leave j closed, set xij′ ← 1 for all i ∈ Aj

17 else
18 open j, set yj ← 1 and X ← X ∪ {j}
19 set xij ← 1 for all i ∈ Aj

20 A← A \ Aj

21 until A = ∅
22 return X

of locations and connect each client to an open location to minimize the total opening plus
connection cost. A solution can be represented by a set X ⊆ F of open facilities.

Consider an ILP formulation of the problem. We use binary variables xij ∈ {0, 1} to express
if i ∈ C is connected to j ∈ F , and yj ∈ {0, 1} to express if j ∈ F is open. We directly
formulate the LP relaxation:

Min
∑
j∈F

yjfj +
∑
i∈C

∑
j∈F

xijd(i, j)

s.t.
∑
j∈F

xij ≥ 1 for all i ∈ C

yj − xij ≥ 0 for all i ∈ C, j ∈ F
xij, yj ≥ 0 for all i ∈ C, j ∈ F

(6.8)

The first set of constraints requires that each client is connected to at least one facility. The
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second set of constraints requires that whenever a client is connected to a facility, this facility
must be open.

The dual of the LP relaxation is

Max
∑
j∈F

αi

s.t.
∑
i∈C

βij ≤ fj for all j ∈ F

αi − βij ≤ d(i, j) for all i ∈ C, j ∈ F
αi, βij ≥ 0 for all i ∈ C, j ∈ F

(6.9)

Consider Algorithm 29, which has strong connections to primal and dual LPs:
� Start with all-zero primal and dual solutions. α,β = 0 is dual feasible, and x,y = 0
fulfills primal complementary slackness (but is primal infeasible).

� We try to maintain both properties and also make x,y primal feasible.
� Initially, all clients are active. We raise αi = t for active clients at the same rate.
� First, a dual connection constraint will go tight when αi = t = d(i, j). Then primal
complementary slackness allows to raise xij ≥ 0, i.e., i can get connected to j ∈ F .
However, since we aim for primal feasibility, we do this only if j is open.

� If j was opened before (Event 1), then yj = 1 and we connect i to j. We set xij = 1
and freeze the current dual variables αi and βij (i.e., i stops being active).

� Otherwise, we continue to increase αi = t > d(i, j). For dual feasibility, we must also
raise βij = αi − d(i, j) = t− d(i, j), the contribution of i to the opening cost of j.

� Then either some Event 1 happens for i (and a different facility), or a dual opening
constraint

∑
i βij = fj goes tight (Event 2). Then primal complementary slackness

allows to raise yj, i.e., j is allowed to get opened.
� Now we can open j – but be careful! We include βij-contributions of inactive clients
for the opening constraint of fj (dual feasibility), but we don’t want their payment,
since we might have used it to justify opening earlier facilities...

� We check if there is some previously opened facility j′ that is close (d(j, j′) ≤ 2t).
� If not, we open j, set yj = 1 and connect all active clients in Aj to j by setting xij = 1
for each i ∈ Aj.

� Otherwise, we connect all clients from Aj to j′ by setting xij′ = 1 for each i ∈ Aj. We
freeze their dual variables αi and βij (i.e., they stop being active). This violates primal
complementary slackness – but we maintain an approximate version, which will imply
the approximation ratio.

[Pic: Algorithm, dual variable = payment of active clients, events, freezing of dual variables]

The main result of this section is the following theorem.

Theorem 50. Algorithm 29 can be implemented in polynomial time and has an approxima-
tion ratio of 3.

Proof. We first discuss the running time.
� Suppose an event has happened at time t.
� There are at most |C| · |F | many Events 1 and at most |F | many Events 2.
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� Given the current set of active clients, we can easily compute in polynomial time for
each event E the value of tE ≥ t when E would happen.

� As such, we can compute in polynomial time the next event that will happen.
� All computations when a given event happens can clearly be implemented efficiently.
� Since there are only polynomially many events in total, the algorithm requires polyno-
mial running time.

We now turn attention to the approximation ratio.

Consider a client i at the end of the algorithm. We first show that i contributes at most one
share βij > 0 to the opening cost of a facility j.

� Suppose for i there are two open facilities j1 and j2, and βij1 , βij2 > 0.
� Let j2 be the facility that was opened later, and t be the time at which j2 was opened.
� Since βij1 , βij2 > 0 we have d(i, j1) < t and d(i, j2) < t. Hence, by the triangle
inequality d(j1, j2) ≤ d(j1, i) + d(i, j2) < 2t.

� t2 is not opened by the algorithm – a contradiction. E

Now consider the cost of the final solution x,y and the “payments” made by all agents in
the dual solution α,β.

� Case 1: i ∈ C is connected to a open facility j due to Event 1. Then d(i, j) = αi, i.e.,
i pays his connection cost. Since i is only connected to a single facility we have∑

j′∈F

xij′d(i, j
′) = d(i, j) = αi.

� Case 2: j ∈ F opened in Event 2. Then yj = 1 and xij = 1 for all i ∈ Aj. By
tightness of dual constraints, the active clients in Aj pay exactly for resulting opening
and connection costs:

yjfj +
∑
i∈Aj

∑
j′∈F

xij′d(i, j
′) = fj +

∑
i∈Aj

d(i, j) =
∑
i∈Aj

αi ,

and by our observation above, agents in Aj do not pay for any other connection or
opening costs.

� Case 3: j ∈ F not opened in Event 2 at time t. There is open j′ with d(j, j′) ≤ 2t,
and we connect xij′ = 1 for all i ∈ Aj. For every i ∈ Aj we have αi = t ≥ d(i, j). By
the triangle inequality

d(i, j′) ≤ d(i, j) + d(j, j′) ≤ t+ 2t = 3αi

Hence, the total connection cost generated by “rerouting” the clients from Aj to j′ is∑
i∈Aj

∑
j∈F

xijd(i, j) =
∑
i∈Aj

d(i, j′) ≤
∑
i∈Aj

3αi .

Suppose x∗,y∗ and α∗,β∗ are optimal primal and dual solutions, resp. For the total cost of
the solution computed by our algorithm we observe∑

j∈F

yjfj +
∑
i∈C

∑
j∈F

xijd(i, j)
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≤ 3 ·
∑
i∈C

αi (apx. primal compl. slack., due to cases above)

≤ 3 ·
∑
i∈C

α∗
i (α,β dual feasible)

= 3 ·

(∑
j∈F

y∗j fj +
∑
i∈C

∑
j∈F

x∗
ijd(i, j)

)
. (strong LP duality)

This proves an approximation ratio of at most 3.

6.6 Steiner Forest

The Steiner Tree problem is a natural generalization of Min-Spanning Tree and single-
source single-sink Shortest Path. We look for a min-cost set of edges that connects a subset
V1 ⊆ V of the nodes (called terminals). The resulting tree can also contain other, so-called
Steiner vertices – but these will be included only for reachability or cost minimization when
connecting the set of terminals.

� G = (V,E) undirected graph, edge costs ℓe ≥ 0 for each e ∈ E
� Partition of V into terminals V1 ⊆ V and Steiner vertices V \ V1

� Steiner tree T ⊆ E: Set of edges such that G = (V, T ) has u-v-path for each u, v ∈ V1

� Goal: Find a Steiner tree of smallest total cost
∑

e∈T ℓe

[Pic: Example Steiner Tree]

We directly consider a generalization, the Steiner Forest problem. It is a classic ex-
ample for more complicated network design problems, which have lots of applications in
telecommunications, logistics, etc.

In Steiner Forest, we have k different types of terminals V1, . . . , Vk. We must select
a set F of edges that, for each type i, connects all terminals of type i to each other:

� G = (V,E) undirected graph, edge costs ℓe ≥ 0 for each e ∈ E.
� k vertex sets V1, . . . , Vk ⊆ V of terminals
� Steiner forest F ⊆ E: Set of edges such that G = (V, F ) has u-v-path for each u, v ∈ Vi

and each i = 1, . . . , k.
� Goal: Find a Steiner forest of smallest total cost

∑
e∈F ℓe

Some remarks:
� F connects every pair of terminals u, v ∈ Vi of the same type, but not necessarily pairs
of terminals u ∈ Vi, v ∈ Vj with different types i ̸= j.

� Terminals of different types are connected only when this is needed for connecting some
terminals of the same type or when it is cheaper in terms of costs.

� W.l.o.g. we can assume terminal sets are distinct: Vi ∩ Vj = ∅ for i ̸= j. (Why?)

[Pic: Example Steiner Forest, terminal types, distinct terminal sets]

Towards an ILP formulation, we extend the ILP (6.6) for Shortest Path. For eachW ⊆ V ,
we define a function f that indicates if there must be an edge leaving set W
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Algorithm 30: Primal-Dual Algorithm for Steiner Forest

1 Input: Graph G = (V,E), edge costs ℓe, sets of terminals V1, . . . , Vk

2 Initialize F1 ← ∅, x← 0, y← 0, t← 1
3 while Ft not a feasible Steiner forest do
4 Ct ← {W | W vertex set of a connected component in (V, Ft)}
5 C1t ← {W ∈ Ct | f(W ) = 1}
6 Raise all yW , W ∈ C1t , uniformly until dual constraint tight for some

e′ ∈ δ(W ),W ∈ C1t
// Primal Compl. Slackness: Tight constriant allows xe′ > 0.

7 ∆t ← amount by which we raised each yW , W ∈ C1t
8 Ft+1 ← Ft ∪ {e′} and xe′ ← 1
9 t← t+ 1

10 F ← Ft

11 while there is e ∈ F with F \ {e} feasible do F ← F \ {e}, xe ← 0
12 return F

f(W ) =

{
1 there is i ∈ [k] and u, v ∈ Vi with u ∈ W and v ̸∈ W

0 otherwise.

If f(W ) = 1, we must connect at least one terminal inside W to at least one terminal outside
W . Consider δ(W ) = {{u, v} ∈ E | u ∈ W, v ̸∈ W}, the set of (undirected) edges in the cut
(W,V \W ). There must be at least one edge of δ(W ) in every feasible Steiner forest F .

[Pic: Terminals, cut W , function f(W ) ∈ {0, 1}]

We again use binary variables xe ∈ {0, 1} to indicate if e ∈ F (xe = 1) or not (xe = 0). Let
S = {W ⊂ V | f(W ) = 1} be all necessary cuts of G, which every Steiner forest must cross.

Our resulting (I)LPs for Steiner Forest look identical to the ones for Shortest Path
in (6.6) and (6.7) – the only difference lies in the definition of S based on function f . This,
however, will make things more complicated.

Min
∑
e∈E

xeℓe

s.t.
∑

e∈δ(W )

xe ≥ 1 for all W ∈ S

xe ∈ {0, 1} for all e ∈ E

Max
∑
W∈S

yW

s.t.
∑

W :e∈δ(W )

yW ≤ ℓe for all e ∈ E

yW ≥ 0 for all W ∈ S
(6.10)

Consider Algorithm 30, which has similarities with Algorithm 28 above. Some remarks:
� Instead of one at a time, we raise all dual variables yW by the same amount, for all W
corresponding to connected components of (V, Ft) that need outside connections.

� In each iteration t, there are at most n connected components in (V, Ft). Hence, we
need to raise at most n dual variables in this iteration.
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� Also, in iteration t, at least one new dual constraint for some edge e′ goes tight →
at most m = |E| iterations. Overall, at most nm non-zero dual variables in the end.
Instead of all (exponentially many) yW , we only keep track of the non-zero ones.

� In iteration t, we know the edges leaving the connected components of (V, F ) and the
dual variables that get raised. Hence, we can efficiently compute the smallest value ∆t

at which a dual constraint of a new edge becomes tight.
� The final pruning step in the while-loop can be implemented in polynomial time. It is
necessary – otherwise F might contain way too many edges (Exercise).

[Pic: Example run of the algorithm, “moat growing” around terminals and components]

The observations above show the following result:

Lemma 24. Algorithm 30 can be implemented in polynomial time.

The main result of this section is the following theorem.

Theorem 51. Algorithm 30 has an approximation ratio of 2.

The algorithm maintains exact primal complementary slackness. The ratio 2 could result
from approximate dual complementary slackness if for every W ∈ S

yW > 0 ⇒
∑

e∈δ(W )

xe ≤ 2 .

Unfortunately, it’s not so easy – we repeatedly raise all yW of connected components, and
it’s unclear that the condition holds in the end for every cut W with yW > 0. Instead, we
show an “on average”-version for all cuts W ∈ C1t , for which we raise yW in an iteration t.

Lemma 25. Given the final solution F (and x) of the algorithm, we see that in the beginning
of every iteration t ∑

W∈C1
t

|δ(W ) ∩ F | =
∑
W∈C1

t

∑
e∈δ(W )

xe ≤ 2 · |C1t |.

We first prove the theorem assuming the lemma is true.

Proof of Theorem 51. We start with the same arguments as in the proof of Theorem 49:∑
e∈E

xeℓe =
∑
e∈F

ℓe =
∑
e∈F

∑
W :e∈δ(W )

yW (primal compl. slackness)

=
∑
W∈S

∑
e∈F∩δ(W )

yW (grouping together each occurence of yW )

=
∑
W∈S

yW · |δ(W ) ∩ F |

(here approx. dual compl. slackness |δ(W ) ∩ F | ≤ 2 would be nice, but it’s not true...)
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In every iteration t, the dual variables yW are raised by ∆t each, for every W ∈ C1t . In total,
the increase in dual variables is∑

W∈S

yW =
∑
t

∑
W∈C1

t

∆t =
∑
t

∆t · |C1t | .

Clearly, y remains dual feasible throughout the algorithm. Hence,∑
e∈E

xeℓe ≤
∑
W∈S

yW · |δ(W ) ∩ F | =
∑
t

∑
W∈C1

t

∆t · |δ(W ) ∩ F |

=
∑
t

∆t ·
∑
W∈C1

t

|δ(W ) ∩ F | ≤
∑
t

∆t ·
∑
W∈C1

t

2 · |C1t | (by Lemma 25)

= 2 ·
∑
t

∑
W∈C1

t

∆t · |C1t | = 2 ·
∑
W∈S

yW (∆t raise for each W ∈ C1t )

≤ 2 ·
∑
W∈S

y∗W (y dual feasible)

= 2 ·
∑
e∈E

x∗
eℓe (strong LP duality)

Finally, let us argue why Lemma 25 is true.

Proof of Lemma 25. Consider the beginning of an iteration t. We consider the forest F and
“contract” all edges from Ft (i.e., merge nodes to a super-node). This leaves us with Ht, a
“forest of components” in iteration t:

� (V, Ft) is also a forest: Initially F1 empty forest. Edge e′ added only among different
connected components → all Ft acyclic.

� Let Ct = {W1, . . . ,Wd} be the (vertex sets of) connected components in iteration t.
� Construct the graph Ht: Add a vertex vi for each set Wi. Add an edge {vi, vj} for each
{u, v} ∈ F with u ∈ Wi and v ∈ Wj.

� Since F is a forest, Ht must be a forest.

[Pic: Final forest F , forest Ft in iteration t, contracted forest Ht]

Each vertex vi in Ht is active (f(Wi) = 1) or non-active (f(Wi) = 0).
� Every singleton node in Ht is an empty tree and has outdegree 0.
� Consider a vertex vi of degree 1 in Ht. There is an edge {vi, vj} in Ht. Why is
{vi, vj} ∈ F? If f(Wi) = 0, then the edge would never be added (or deleted in the final
pruning while-loop). Hence vi must be active.

� A vertex vi of degree 2 or more can be inactive – maybe f(Wi) = 0, but other compo-
nents connect to each other by routing “through” vi

Every inactive vertex has degree at least 2, so their average degree is at least 2. Ht is a forest
with 1 ≤ r ≤ d trees, so average degree of all vertices is 2− (2r/n) < 2. Hence, the average
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degree of active vertices in Ht is at most 2. Since active vertices correspond to components
of C1t and their incident edges are from F , we see

1

|C1t |
∑
W∈C1

t

|δ(W ) ∩ F | ≤ 2 .

Algorithm 30 and Theorem 51 can be extended to min-cost forest problems where the con-
nection requirements for subsets W ⊂ V can be expressed using a function f : 2V → {0, 1}
with the following conditions:

1. f(∅) = f(V ) = 0
2. f(W ) = f(V \W ) for all ∅ ⊆ W ⊆ V
3. f(W ∪ U) ≤ max{f(W ), f(U)} for any two disjoint W,U ⊂ V

We call such a function f proper. For a proper f , there is an optimal solution of ILP 6.10
which corresponds to a forest F ⊆ E. Whenever there is a way to determine f(W ) for each
component W ∈ Ct in polynomial time, we can implement each iteration t of Algorithm 30
in polynomial time. The proofs of Lemma 25 and Theorem 51 apply without modification
for min-cost forest problems with a proper f .
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