Approximation Algorithms

Winter term 2021/22

Prof. Dr. Martin Hoefer Tim Koglin, Lisa Wilhelmi

Issued: 08.02.2022 Due: 15.02.2022, **10:15h**

 $(4 + 2^* \text{ points})$

Assignment 12

- This is the last assignment of the course. Its scope is halved.
- Exercises marked with * are bonus they count for your score but not for the sum of points.

Exercise 12.1 Submodular Functions

- a) For each of the following problems on an undirected graph G = (V, E), decide whether the set function f(S), where $S \subseteq V$, is submodular or not.
 - (i) For every set S, the function f returns the cardinality of a maximum independent set I such that $I \subseteq S$.
 - (ii) Consider weights $w_e > 0$, for all edges $e \in E$, and two vertices $s, t \in V$ as given. For every *s*-*t*-cut *S*, let the function *f* be defined as the overall cost of the cut, i.e., $f(S) = \sum_{e \in \delta(S)} w_e$.
- b)* For the functions defined in (i) and (ii), decide whether they are monotone or not.

Exercise 12.2 Cycles and Superstrings

(3+3 points)

- a) Consider the greedy superstring algorithm for SHORTEST COMMON SUPERSTRING discussed in the lecture. Given $\varepsilon > 0$, construct an instance U consisting of three strings over a finite alphabet Σ such that greedy superstring computes a $(3/2 - \varepsilon)$ -approximate solution, where for each pair of strings $u, v \in U$, u must not be a substring of v.
- b) Assume four strings u, v, u^*, v^* satisfying

$$\operatorname{overlap}(u, v) \ge \operatorname{overlap}(u, v^*)$$
 and $\operatorname{overlap}(u, v) \ge \operatorname{overlap}(u^*, v)$.

Show that

$$\operatorname{overlap}(u, v) + \operatorname{overlap}(u^*, v^*) \ge \operatorname{overlap}(u, v^*) + \operatorname{overlap}(u^*, v)$$

Contacts: {koglin,wilhelmi}@em.uni-frankfurt.de.

The assignments and further information on the course are provided on our website: https://algo.cs.uni-frankfurt.de/lehre/apx/winter2122/apx2122.shtml