Approximation Algorithms

Winter term 2021/22

Prof. Dr. Martin Hoefer

Assignment 11 Issued: 01.02.2022
Due: 08.02.2022, 10:15h

- Due to maintenance work by studiumdigitale, Moodle will be offline on Feb 7th from 08:00h on. For this reason, you may hand in your solution via e-mail to Lucas Hammer [\(lucas.hammer@stud.uni-frankfurt.de\)](mailto:lucas.hammer@stud.uni-frankfurt.de) if you cannot manage to upload it in time otherwise.
- Exercises marked with [∗] are bonus they count for your score but not for the sum of points.

Exercise 11.1 Parametric Pruning

Consider the metric K-CENTER problem in terms of a complete undirected graph $G = (V, E)$ with edge costs $d_e \geq 0$, $e \in E$, satisfying the triangle inequality, and a positive integer $k \leq |V|$. Define $m := |E|$. Beyond that, a *dominating set* in an undirected graph $H = (U, F)$ is a subset $D \subseteq U$ such that every vertex in $U \setminus D$ is adjacent to a vertex in D. Let $dom(H)$ denote the size of a dominating set in H with minimum cardinality.

A restatement of metric K-CENTER shows how parametric pruning applies to it: Sort the edges of G in nondecreasing order of cost, i.e., $d_{e_1} \leq d_{e_2} \leq ... \leq d_{e_m}$ w.l.o.g., and let $G_i = (V, E_i)$, where $E_i = \{e_1, e_2, ..., e_i\}$. The metric K-CENTER problem is equivalent to finding the smallest index i such that G_i has a dominating set of size at most k. In particular, G_i contains k star graphs spanning all vertices (possibly plus additional edges). If i^* is the smallest such index, then $d_{e_{i^*}}$ is the cost of an optimal solution to metric k-Center, which will be denoted by OPT hereafter.

a) For a graph H, define the *square* $H^2 = (U, F')$, where $\{u, v\} \in F'$ if there is a path of length at most 2 between u and v in H (and $u \neq v$). Let I be an independent set in H^2 .

Show that $|I| \leq \text{dom}(H)$.

Now consider the following algorithm for K-CENTER, which uses the fact that maximal independent sets can be computed in polynomial time.

Algorithm 1: Parametric Pruning for K-CENTER

Input: Family of graphs $G_1, ..., G_m$

1. Construct $G_1^2, G_2^2, ..., G_m^2$

2. Compute a maximal independent set M_i in each graph G_i^2

- 3. Find the smallest index j such that $|M_i| \leq k$
- 4. return Independent set M_i
	- b) Show that $d_{e_j} \leq \text{OPT}$ for j as defined in the algorithm.
	- c) Show that the algorithm achieves an approximation ratio of 2 for K-CENTER.
	- d)[∗] Give a tight example for the previous algorithm and prove its approximation ratio.

 $(2 + 1 + 3 + 3^*)$ points)

Due: 08.02.2022, 10:15h

Exercise 11.2 Variants of k-PARTITION $(3 + 3 \text{ points})$

In the k-PATH PARTITION problem, a complete, undirected graph $G = (V, E)$ is given with edge costs $c_e \geq 0$ that satisfy the triangle inequality, and a constant $k \in \mathbb{N}_{>0}$ such that $|V| = 0$ (mod k). The goal is to find a collection of paths, consisting of exactly k vertices each, with minimal sum of costs and such that each vertex is on exactly one path. In the k -TREE PARTITION problem, the same input as in the k -PATH PARTITION problem is given except that the graph is not necessarily complete and the edge costs do not necessarily obey the triangle inequality. The goal is to find a collection of trees with minimal sum of costs such that each tree has $0 \pmod{k}$ many vertices, and each vertex is in exactly one tree.

- a) An instance for k-PATH PARTITION and an α -approximation algorithm for k-TREE PARTITION are given. Derive a 2α -approximation for k-PATH PARTITION by applying the algorithm on the instance.
- b) Consider the following ILP for the k-TREE PARTITION problem where $\delta(S)$ is the set of edges crossing the cut $(S, V \setminus S)$:

Minimize
$$
\sum_{e \in E} x_e c_e
$$

\nsubject to
$$
\sum_{e \in \delta(S)} x_e \geq 1
$$
 if $c \cdot k < |S| < (c+1) \cdot k$ with $c \in \mathbb{N}_{\geq 0}$
\n $x_e \in \{0,1\}$ for all $e \in E$

Show that there exists a corresponding primal-dual algorithm which yields a 2-approximation.

Exercise 11.3 Approximating STEINER FOREST $(3 + 2 + 2 + 1 \text{ points})$

Consider the primal-dual algorithm for STEINER FOREST discussed in the lecture.

a) Show that there exists no constant $\alpha < 2$ such that this algorithm is α -approximative.

In the metric STEINER FOREST problem, all edge costs satisfy the triangle inequality. The goal in the remainder of this exercise is to show that any α -approximation algorithm for metric STEINER FOREST also yields an α -approximation to STEINER FOREST. This implies that for an instance of STEINER FOREST it can be assumed w.l.o.g. that the triangle inequality is satisfied. Proceed in the following steps.

- b) Show that any instance G of STEINER FOREST can be transformed into an instance G' of metric STEINER FOREST in polynomial time.
- c) Show that a solution for G' can be transformed into a solution for G in polynomial time.
- d) Show that an α -approximation algorithm for metric STEINER FOREST also yields an α approximation for STEINER FOREST.

Contacts: {koglin,wilhelmi}@em.uni-frankfurt.de.

The assignments and further information on the course are provided on our website: <https://algo.cs.uni-frankfurt.de/lehre/apx/winter2122/apx2122.shtml>