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• This is the first assignment that counts for Part 2 of the course and is due in five weeks.

• Exercises marked with ∗ are bonus - they count for your score but not for the sum of points.

• The next assignment will be released on Jan 18th, 2022.

Exercise 8.1. Dual LP (3 + 3* points)

Consider the Feedback Vertex Set problem: the input is an undirected graph G = (V,E) with
weights wv ≥ 0, for each vertex v ∈ V . The goal is to determine a set of vertices S ⊆ V with
minimum total weight such that any simple cycle C of arbitrary length in G contains at least one
vertex in S. Recall that a cycle is simple if only the first and last vertex are equal. For a given
instance G, let K denote the set of all simple cycles in G. An LP-relaxation for Feedback Vertex
Set is as follows:

Minimize
∑
v∈V

wvxv,

subject to
∑
v∈C

xv ≥ 1 ∀C ∈ K,

xv ≥ 0 ∀ v ∈ V.

a) State the associated dual LP and give a short interpretation of it.

b)∗ For the instance pictured below, assume that wv = 1, for all v ∈ V . State three different
feasible dual solutions y(1), y(2), y(3) for this instance such that, for each solution, no higher
value can be assigned to any dual variable separately. One of the three stated solutions shall
be optimal – explain why it is optimal indeed.
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Exercise 8.2. LP for Shortest s-t-Path (4 points)

In the Shortest s-t-Path problem, an undirected graph G = (V,E) is given where each edge e ∈ E
is associated with a length `e ≥ 0. For two given vertices s, t ∈ V , the goal is to compute a path P
that starts in s and ends in t with minimal sum of lengths. A set U ⊂ V is called an s-t-intersection
if s ∈ U but t /∈ U . Further, let δ(U) denote the set of all edges {u, v} ∈ E such that u ∈ U and
v /∈ U . The Shortest s-t-Path problem can then be formulated as the following integer linear
program (ILP):

Minimize
∑
e∈E

`exe,

subject to
∑

e∈δ(U)

xe ≥ 1 ∀U ∈ S,

xe ∈ {0, 1} ∀ e ∈ E,

where S is the set of all possible s-t-intersections, i.e., S = {U ⊂ V | s ∈ U, t /∈ U}.

For a set A ⊆ E of edges, let x be the associated assignment of ILP variables where xe = 1 for all
e ∈ A, and xe = 0 otherwise. Show that x is a solution to the ILP if and only if there exists an
s-t-path P such that all edges in P are also contained in A.

Exercise 8.3. Non-linear Rounding (3 + 2 + 2 points)

As discussed in the lecture, the Best-of-Rounding algorithm for the MaxSat problem runs Simple
rounding and LP rounding once each and returns the solution that has higher total weight of the
two. It was shown that Best-of-Rounding has approximation ratio 4/3. The goal of this exercise is
to show that the same approximation ratio can be achieved without need for Simple rounding by
solely rounding the solutions of the LP in a non-linear manner.

Using the same definitions and notations as in the lecture, let (y∗, z∗) denote an optimal solution
to the LP-relaxation for MaxSat with k ∈ N clauses. For starters, let f : [0, 1] → [0, 1] be an
arbitrary function. The algorithm LP f-rounding first computes the optimal solution (y∗, z∗) and
then independently sets xj = 1 with probability f(y∗j ) and xj = 0 otherwise, for each variable xj .
Note that this is equivalent to the LP rounding algorithm from the lecture if f(x) = x. For the
remainder of this exercise, LP f-rounding is considered for arbitrary functions f which satisfy the
following property for all x ∈ [0, 1]:

1− 4−x ≤ f(x) ≤ 4x−1.

Perform the following steps to show that LP f-rounding has approximation ratio 4/3 in expectation:

a) Show that any clause Ci is satisfied with probability at least 1− 4−z
∗
i .

b) Taking up the result in a), show that any clause Ci is satisfied with probability at least 3/4 ·z∗i .
Hint: Use the fact that the function g(x) = 1− 4−x is concave in [0, 1] to obtain a lower bound
for g(x), as done in the lecture.

c) Let Wi be a random variable such that Wi = wi if Ci is satisfied and Wi = 0 otherwise, where
wi is the weight of clause Ci. Define W =

∑k
i=1Wi as the total weight of all satisfied clauses.

Show that E[W ] ≥ 3/4 ·OPT.
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Exercise 8.4. Randomized Algorithm for Max3Sat (2 + 1 + 3 points)

The Max3Sat problem is a special case of the MaxSat problem discussed in the lecture. An
instance of Max3Sat is given by n ∈ N Boolean variables x1, . . . , xn and k ∈ N clauses C1, . . . , Ck.
Every clause Ci consists of exactly three literals and has weight wi = 1. An assignment sets each
variable to either true or false. The goal is to determine an assignment that maximizes the number
of satisfied clauses.

a) Design a randomized algorithm for Max3Sat that computes an 8/7-approximate solution in
expectation.

In the remainder of the exercise, the goal is to show that based on a) an approximation ratio of 8/7
can be achieved with certainty.

b) Show that there exists an assignment that satisfies at least 7/8 · k clauses, for every instance
of Max3Sat.

c) Show that any assignment drawn uniformly at random satisfies at least 7/8 · k clauses with
probability at least 1/(8k).
Hint: Use the probability pl that exactly l ∈ [k] clauses are satisfied.

Comment: Every application of the algorithm in a) yields a solution that satisfies 7/8 · k clauses
in expectation. Since such a solution exists for every instance, as shown in b), it is obtained with
certainty by repeatedly applying the algorithm. The result in c) implies that the number of repetitions
required is 8k in expectation.

We wish you a nice Christmas break
and a happy New Year!

The assignments and further information on the course are provided on our website:
https://algo.cs.uni-frankfurt.de/lehre/apx/winter2122/apx2122.shtml

Contacts: {koglin,wilhelmi}@em.uni-frankfurt.de.
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