Approximation Algorithms

Winter term 2021/22

Prof. Dr. Martin Hoefer Tim Koglin, Lisa Wilhelmi

Assignment 5

Issued: 23.11.2021 Due: 30.11.2021, **10:15h**

(2+3 points)

Exercises marked with * are bonus - they count for your score but not for the sum of points.

Exercise 5.1 K-CENTER Taking Center Stage $(3 + 3 + 3^* \text{ points})$

a) Let $c = 1 + \varepsilon$ for some positive $\varepsilon < 0.001$. The set $K = \{A, B, C, D, E, F\}$ of six data points in the Euclidean plane defines an input for the 2-CENTER problem, where

 $A=(0,0), \quad B=(c,0), \quad C=(2c,0), \quad D=(0,2), \quad E=(c,2), \quad F=(2c,2).$

Using the 2-flip neighborhood $\mathcal{N}_2(M) := \{M' \mid |(M' \setminus M) \cup (M \setminus M')| \leq 2\}$, determine a locally optimal solution $M \subseteq K$ for 2-CENTER that is not globally optimal. *Hint: The parameter* ε may be neglected if its size is not decisive.

- b) Show that the running time of the *Strict Local Search* algorithm on K-CENTER with the 2-flip neighborhood is in poly(n). Hint: How many possible improvements exist at most until a locally optimal solution is found?
- c)^{*} For a set K of n data points and a metric $d: K \times K \to \mathbb{R}_{\geq 0}$, let r^* be the maximum distance of any point to its closest center in the optimal solution C^* for K-CENTER on K. Consider the following algorithm for a given parameter $\ell \geq 0$ which computes a set C of centers:
 - 1. Initially, label all $x \in K$ as unmarked and set $C = \emptyset$.
 - 2. WHILE there are unmarked data points in K, DO: Add some arbitrary unmarked $x \in K$ to C and mark all points $x' \in K$ with distance $d(x, x') \leq 2\ell$.

Show: If $\ell \ge r^*$, then $|C| \le k$.

Exercise 5.2 Dominating Sets in the Hypercube

A hypercube is a d-dimensional analogue of a square (d = 2) and a cube (d = 3). It has 2^d corners. For this exercise, consider the d-dimensional hypercube modeled as a graph $W_d(V, E)$. More specifically, each corner of the hypercube is modeled as a vertex in W_d and is uniquely described by a binary vector of length d. Thus, $V = \{0, 1\}^d$. Two vertices $x, y \in \{0, 1\}^d$ are connected by an edge in E if and only if x and y differ in exactly one entry. Recall that a set $D \subseteq V$ is dominating if, for every $v \in V$, D contains v or at least one vertex adjacent to v.

- a) Show that any dominating set D in $W_d(V, E)$ consists of at least $\frac{2^d}{d+1}$ vertices.
- b) Construct an optimal dominating set $D^* \subseteq V$ in the 4-dimensional hypercube W_4 , i.e., $|D^*|$ is as small as possible. Show that the constructed set is optimal and correct indeed (for the latter, a conclusive sketch of W_4 indicating D^* is sufficient).

In the Bipartite Weighted MAXMATCHING problem, a bipartite graph $G = (L \cup R, E)$ is given together with a weight function $w : E \to \mathbb{R}$ (recall that $L \cap R = \emptyset$ and $E \subseteq L \times R$). The goal is to compute a matching $M^* \subseteq E$ of maximum weight, i.e., $w(M^*) = \sum_{e \in M^*} w(e)$ is maximal. Given a matching M, its k-flip neighborhood is defined by $\mathcal{N}_k(M) := \{M' \mid |(M' \setminus M) \cup (M \setminus M')| \le k\}$.

Prove the following statements on the approximation ratio of the *Strict Local Search* algorithm with *k*-flip neighborhood on the Bipartite Weighted MAXMATCHING problem.

- a) For k = 2, the approximation ratio cannot be bounded by any constant.
- b) For k = 3, the approximation ratio is at least 2.
- c) For k = 3, the approximation ratio is at most 2.

The assignments and further information on the course are provided on our website: https://algo.cs.uni-frankfurt.de/lehre/apx/winter2122/apx2122.shtml

Contacts: {koglin,wilhelmi}@em.uni-frankfurt.de.