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Exercise 4.1 Algorithms for BinPacking (2 + 3 points)

The algorithm Best-Fit-Decreasing for the BinPacking problem operates as follows: For a given
instance, the items are sorted in non-increasing order with respect to their sizes gi ∈ [0, 1]. After-
wards, the items are considered consecutively starting with the item of maximum size. Each item is
put into the fullest bin in which it fits. If it does not fit in any existing bin, it is put into a new bin.

a) Construct an instance of the BinPacking problem with a minimum number of items for which
the First-Fit-Decreasing algorithm requires more bins than the Best-Fit-Decreasing algorithm.
A proof of minimality of the instance is not required.
Hint: The minimal number of items is between 3 and 7.

b) Design an instance such that both the First-Fit-Decreasing and the Best-Fit-Decreasing algo-
rithm use at least 11/9 ·OPT bins.
Hint: It will be sufficient to use item sizes from the set {1/2 + ε, 1/4 + 2 · ε, 1/4 + ε, 1/4−2 · ε},
for ε > 0.

Exercise 4.2 Vector BinPacking (5 points)

In the vector BinPacking problem, n items are given whose sizes are described by d-dimensional
vectors gi =

(
gi1, ..., g

i
d

)
, where gij ∈ [0, 1] and d ≥ 1. Each bin has d-dimensional size (1, 1, ..., 1). The

goal is to place all n items in as few bins as possible such that for each bin B and each coordinate
j = 1, ..., d it holds that

∑
i∈B g

i
j ≤ 1.

Assume that there exists a polynomial-time algorithm with approximation ratio α > 1 for the
case d = 1 (which is equivalent to standard BinPacking as discussed in the lecture). Design a
polynomial-time algorithm for general vector BinPacking that uses not more than α ·d ·OPT bins.
Hint: For an instance Λ of vector BinPacking (vBP), think of how to obtain an instance Γ of
standard BinPacking (BP) such that the (approximated) solution to BP on input Γ is also a
feasible solution to vBP on input Λ. Then, consider the largest number of additional bins that must
be introduced when transforming a solution to vBP on input Λ to a solution to BP on input Γ.
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Exercise 4.3 IndependentSet on Trees (3 + 2 + 3∗ points)

For an undirected graph G = (V,E), a set I ⊆ V is called an independent set if for each pair of
vertices i, j ∈ I it holds that {i, j} 6∈ E. In the maximum-weight IndependentSet problem, a
graph G = (V,E) is given, where each vertex v ∈ V has a weight wv ≥ 0. The goal is to find an
independent set I ⊆ V that maximizes the sum of weights of vertices in I.

Suppose that the graphG is a tree. State a dynamic program for maximum-weight IndependentSet
of G explicitly.

a) Specify how the maximum total weight of an independent set is determined in a bottom-up
manner.

b) Specify how the corresponding independent set is constructed in a top-down manner.

c)∗ Now consider the standard IndependentSet problem, i.e., the vertices do not have weights
and the goal is to maximize the cardinality of the independent set.

Design a Greedy algorithm for IndependentSet on trees. Prove correctness of the algorithm
and determine its running time (a proof of optimality is not required).

Exercise 4.4 Preparing Exercise Sheets (3 + 2 points)

Two doctoral students have a pool of n exercises for preparing the weekly exercise sheets, where each
exercise i ∈ [n] has a difficulty di ∈ N>0. Since they want the students to have a steady workload,
they want the next two exercise sheets to have the same overall difficulty using all currently available
exercises.

a) Design a dynamic program that decides whether or not this is possible.

b) Determine the running time of the dynamic program.

The assignments and further information on the course are provided on our website:
https://algo.cs.uni-frankfurt.de/lehre/apx/winter2122/apx2122.shtml

Contacts: {koglin,wilhelmi}@em.uni-frankfurt.de.
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