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Exercise 3.1 Metrics (2 + 2 points)

a) Consider the edge-weighted graph below. Let the distance d(u,v) of two vertices u,v be the
smallest sum of edge weights of any w-v-path in the graph. Determine whether or not the
distance function d forms a metric for the given graph.

b) Consider the following two classes of distance functions d with the ground set X = {1,2,...,n}:
i) Vigj: d(ig) =1
i) Vi£j:0<d(,j)<1

Throughout, assume that Vi € X : d(i,i) = 0 and V4,7 with i # j : d(i,j) = d(j, ). Determine
which classes of d form a metric.

Exercise 3.2 Christofides-Serdyukov Algorithm (3 points)

Consider the following graph with n vertices (where the edges represent Euclidean distances) as input
to the Christofides-Serdyukov algorithm. Assume that Kruskal’s algorithm selects the dashed edges
before the solid edges. Derive a lower bound on the approximation ratio of the Christofides-Serdyukov
algorithm.
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Exercise 3.3 Nearest-Insertion (24+34+2+2+1+2+1 points)

For metric MINTSP (A-MINTSP), an undirected, edge-weighted, complete graph G = (V, E) is
given, where |V| = n. For any pair of vertices u,w € V', the edge weight is regarded as their metric
distance d(u,w) > 0, where d(u,u) = 0. Let u — w denote a movement from wu to w along {u,w}. A
tour S on G is a set of consecutive movements such that starting in a vertex v eventually leads back
to v, where any vertex visited by S in between is visited only once. With a slight abuse of notation,
d(S) denotes the total length of S, i.e., the sum of all covered distances.

Consider the Nearest-Insertion algorithm mentioned in the lecture, which in detail operates as fol-
lows: In the first step, it determines the pair of vertices u,w € V with minimum distance and
constructs the tour S1 = {v; — v1}, where v; is selected uniformly at random between u and w. In
step 4, 2 < i < n, a new vertex v; € V with minimum distance d(v;,v) to a node v visited by S;_1 is
chosen. Define ¢(S;_1,v;) = ming,_u)es,_, d(u,v;) + d(vi, w) — d(u,w) as the minimum elongation
of S;_1 by adding v; to the tour. If the minimum is achieved for v — v’ € S;_1, Nearest-Insertion
sets S; = (Si—1 \ {v = v'}) U{v — v, v; = v’}

a) Perform Nearest-Insertion on the following input graph, where V' = {ky, ko, k3, k4} and the
numbers next to the edges denote the shortest distances between the respective vertices. As-
sume there exists an order k1 < ko < k3 < k4 over V. Here, choose v1 in the first step such
that it is the lower vertex of the two vertices with minimum distance. Furthermore, break ties
between multiple possible paths u — w € S;_; minimizing ¢(S;—1,v;) in favor of those with
lowest u according to this order. For each step 1 < i < 4, state v;, S;, and d(S;).

In the remainder of this exercise, the goal is to show that the approximation ratio of Nearest-Insertion
for A-MINTSP on general input graphs is 2- (1 — %) To do so, take the following course of actions.
(b) Show that for any tour S visiting less than n distinct vertices, any vertex v visited by S, and
any vertex v’ not visited by S, it holds that ¢(S,v) < 2-d(v, ).
Hint: Notice that ¢(S,v") is the minimum elongation. Use the triangle inequality.

(c) Show that for any step 2 < i < n, for any vertex v visited by S;_1, and any vertex v’ not
visited by S;_1, it holds that ¢(S;—1,v;) < 2-d(v,v).

(d) Show that d(S;) can be written as the sum A; of all elongations that have occurred by the end
of step ¢, for any step 2 < i < n.

(e) Suppose that a minimum spanning tree M for G is given. Let d(M) denote the sum of the
lengths of all edges in M. Assume that, for all 2 < ¢ < n, the vertex v; chosen by Nearest-
Insertion in step i can be assigned one-to-one to an edge e; in M such that S;_; visits exactly
one of the two vertices incident to e;. Show that d(S,) < 2-d(M).

(f) Let S* be an optimal tour visiting all of the n vertices. Show that d(M) < (1 — 1) . d(S*).

. . . . . 1
(g) Show that the approximation ratio of Nearest-Insertion is 2 - (1 — 5)

Note: For any of the tasks, you may assume that the previous statements are true even if you did
not show them.
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