Algorithmic Game Theory

Winter Term 2023/2024

Prof. Dr. Martin Hoefer Marco Schmalhofer, Lisa Wilhelmi

Assignment 8

Exercise 8.1.

- a) Consider the Greedy algorithm for knapsack auctions described in the lecture. Show that Greedy is monotone for every bidder.
- b) We stated in the lecture that the FPTAS with granularity parameter $s = \varepsilon \cdot v_{\text{max}}/n$ is not necessarily monotone. Prove this statement, i.e., give an example, where the allocation defined by the FPTAS is not monotone for at least one bidder.
- c) Prove that the same scheme with $s = \delta > 0$ independent of v_1, \ldots, v_n is monotone for all bidders.

Exercise 8.2.

Consider an auction for n bidders and a set M of different goods. Each bidder is only interested in a certain subset $T_i \subseteq M$ of the goods. The subsets T_i are publicly known, but the corresponding value v_i of the subset is private.

The mechanism queries all private values. It determines a result, i.e., an overlap-free allocation of goods to bidders (with $S_i \cap S_j = \emptyset$ for $i \neq j$ and $\bigcup_i S_i \subseteq M$) and payments p_i . The utility of bidder *i* is given by $v_i \cdot x_i - p_i$ where $x_i = 1$ if $S_i \supseteq T_i$ and 0 otherwise.

Consider the following Greedy algorithm:

Collect the bids b_1, \ldots, b_n . Initialize the set W as empty set, set X = M. Sort bidders: $b_1 \ge b_2 \ge \cdots \ge b_n$. for $i = 1, 2, 3, \ldots, n$ do if $T_i \subseteq X$ then Remove T_i from X and add i to W.

return $S_i = T_i$ for $i \in W$, $S_i = \emptyset$ otherwise.

- a) Prove or disprove: The social choice function is monotone.
- b) Let $d = \max_i |T_i|$. We denote the optimal allocation by S^* . Further, W^* contains all bidders who receive their subset of goods with respect to S^* , i.e., $S_i^* = T_i \quad \forall i \in W^*$. Show that Greedy is a *d*-approximation algorithm, i.e.,

$$\sum_{i \in W} v_i \ge \frac{1}{d} \cdot \sum_{i \in W^*} v_i \; .$$

Hint: If Greedy selects a "suboptimal" bidder i, how many "optimal" bidders can i block?

Issued: Jan 09, 2024

Algorithms and Complexity

Jan 15, 2024, 23:55h Due:

(2 + 3 + 3 Points)

(2 + 3 Points)

Exercise 8.3.

Consider a single-item auction with two bidders.

- a) Assume \mathcal{V}_1 is uniform over [0, 1] and \mathcal{V}_2 is uniform over [0, 2]. Derive the virtual value functions for both bidders and calculate the winner of an optimal auction and corresponding payments, for $v_1 = 1$ and $v_2 = 5/3$.
- b) Show that in an optimal auction, the highest bidder may not win the item (even though the highest bidder has a positive virtual value).
- c) Give an intuitive explanation why the property shown in b) is beneficial in terms of revenue.

Exercise 8.4.

(3 + 3 Points)

Consider an auction with k identical items. Each bidder is only interested in getting one of the items. The seller wants to get at least a total revenue of $R \ge 0$. The mechanism is defined as follows:

Collect the bids b_1, \ldots, b_n . Initialize the set S with the k highest bidders, set payments $p_i = 0$ for all $i \in [n]$. while there is a bidder $i \in S$ with $b_i < R/|S|$ do \square Delete such a bidder from S. if $S \neq \emptyset$ then \square for all bidders $i \in S$ do \square Allocate one item to player i and set $p_i = R/|S|$.

- a) Show the following: Let M be any normalized, and incentive compatible mechanism with the property that all players that get an item have to pay the same. If M generates a revenue of at least R, than the mechanism above also generates a revenue of at least R.
- b) Show the following: There is an example for an incentive compatible mechanism M that guarantees a revenue of at least R, where the mechanism above does not generate a revenue of R. (In this case, M does not have the property that all players that get an item have to pay the same.)

Assignments and further information concerning the course can be found at https://algo.cs.uni-frankfurt.de/lehre/agt/winter2324/agt2324.shtml

Contact: Marco Schmalhofer, Lisa Wilhelmi ([lastname]@em.uni-frankfurt.de).