Algorithmic Game Theory

Winter Term 2023/2024

Prof. Dr. Martin Hoefer Marco Schmalhofer, Lisa Wilhelmi

Institute for Computer Science Algorithms and Complexity

Assignment 6 Issued: Nov 28, 2023
Due: Dec 04, 2023. Dec 04, 2023, 23:55h

- Part 1 will end with lecture 14 on Dec 7.
- This is the last assignment of part I and be discussed in the exercise session on Dec 8.

Exercise 6.1. (1 + 3 + 3 + 2 + 2 Points)

In a connection game with high edge costs there is a set N of $n > 1$ players and edge costs $\alpha > n(n-1)$. Each player is a node. Player i chooses a subset $S_i \subseteq \mathcal{N} \setminus \{i\}$ as strategy. If $j \in S_i$, then i buys an *undirected edge* $\{i, j\}$ to j. If an edge is bought by one player, it can be used by all players.

The network in state S is $G(S) = (N, E(S))$, a multigraph of all player nodes and all purchased edges $E(S) = \{ \{i, j\} \mid i \in \mathcal{N}, j \in S_i \}.$

For his costs, player i considers the costs $\alpha \cdot |S_i|$ of the edges he buys and the length $dist_{G(S)}(i,j)$ of a shortest path in $G(S)$, for every other player $j \in \mathcal{N}$. If there is no path between i and j, then $dist_{G(S)}(i,j) = \infty$. The costs of i in state S are

$$
c_i(S) = \alpha \cdot |S_i| + \sum_{j \in \mathcal{N}} dist_{G(S)}(i, j) .
$$

The social costs are $cost(S) = \sum_{i \in \mathcal{N}} c_i(S)$.

Show the following statements:

- a) Consider a connection game with high edge costs and 5 agents. Derive a pure Nash equilibrium that is not a social optimum.
- b) For every pure Nash equilibrium S of a connection game with high edge costs, the network $G(S)$ is a tree.
- c) For every social optimum S^* of a connection game with high edge costs, the network $G(S)$ is a star graph (i.e. there is a node i' and $E(S^*) = \{\{i',j\} \mid j \in \mathcal{N} \setminus \{i'\}\}\$.
- d) The price of anarchy for pure Nash equilibria in connection games with high edge costs is at most 2.
- e) There are no constants $\lambda > 0$ and $\mu < 1$, so that every connection game with high edge costs is (λ, μ) -smooth.

Exercise 6.2. $(3 + 3 \text{ Points})$

a) Construct an equal-sharing game with a pure Nash equilibrium S and a socially optimal state S^* such that

$$
\frac{\mathrm{cost}(S)}{\mathrm{cost}(S^*)} = n.
$$

Argue in one sentence why S is a pure Nash equilibrium.

b) Prove that equal-sharing games are $(n, 0)$ -smooth, i.e. that the price of anarchy for coarsecorrelated equilibria is at most n .

Exercise 6.3. $(3 + 4 \text{ Points})$

- a) Construct a congestion game with affine linear delay functions and price of stability arbitrarily close to $\frac{4}{3}$. Argue why your example has the desired properties.
- b) Prove that the price of stability in congestion games with affine linear delay functions is at most 2.

Remark: Assume an affine linear function f to have the following form $f(x) = a \cdot x + b$ for $a, b \ge 0$.