Algorithmic Game Theory

Winter Term 2023/2024

Prof. Dr. Martin Hoefer Marco Schmalhofer, Lisa Wilhelmi

Assignment 5

Issued: Nov 21, 2023 Due: Nov 27, 2023, **23:55h**

This assignment will be discussed in the exercise session on Dec 1st.

Exercise 5.1.

(1+3+3 Points)

The following (4×4) bimatrix denotes **utilities** for both players in all states in a stategic game:

		E		F			G			Η	
		2			8			3			2
А	2		3			8			2		
_		8			1			0			3
В	3		1			0			8		
		3			0			1			8
С	8		0			1			3		
		2			3			8			2
D	2		8			3			2		
	4		0			0			4		

Give an example for each of the following equilibria concepts for this game:

- a) a mixed Nash equilibrium.
- b) a correlated equilibrium that is not a mixed Nash equilibrium.
- c) a coarse-correlated equilibrium that is not a correlated equilibrium.

Exercise 5.2.

(2+3+3+3 + 3 Points)

Let a finite game Γ with n agents be given. The set of strategies of agent i is denoted by S_i .

- a) Prove: Every correlated equilibrium \mathcal{V} is also a coarse-correlated equilibrium.
- b) Assume Γ is a symmetric (2×2) bimatrix game, where both players have the same set of strategies and identical costs in corresponding states, i.e., for all $(x, y) \in S_1 \times S_2$, there is a valid state $(y, x) \in S_1 \times S_2$ and it holds $c_1(x, y) = c_2(y, x)$.

Show that every coarse-correlated equilibrium ${\mathcal V}$ is also a correlated equilibrium.

c) Show that every mixed Nash equilibrium in Γ is a coarse-correlated equilibrium in the following sense: Given a mixed Nash equilibrium $(x_{ij})_{i \in N, j \in S_i}$, we define the distribution over states \mathcal{V} by

$$p(s) = \prod_{i \in N} x_{i,s_i}$$

Prove that \mathcal{V} is a coarse-correlated equilibrium.

d) Prove: If \mathcal{V}' and \mathcal{V}'' are correlated equilibria then $\lambda \mathcal{V}' + (1 - \lambda)\mathcal{V}''$ is also a correlated equilibrium, for $\lambda \in (0, 1)$.

Exercise 5.3.

(4 + 3 Punkte)

- a) Consider the two given instances of Wardrop games above. Derive an upper bound on the price of anarchy for both instances.
- b) Let a Wardrop game on a directed graph G with nodes s and t be given, where there exists at least one path from s to t. For every edge $e \in E$, the latency function is given by $d_e(x) = a_e x^2 + b_e x + c_e$, where $a_e, b_e, c_e \ge 0$. Show that the price of anarchy is at most

$$\frac{1}{1-\frac{2}{3\cdot\sqrt{3}}} \approx 1.625$$
 .

Hint: Consider the proof regarding affine latency functions from the lecture.

Assignments and further information concerning the course can be found at https://algo.cs.uni-frankfurt.de/lehre/agt/winter2324/agt2324.shtml Contact: Marco Schmalhofer, Lisa Wilhelmi ([lastname]@em.uni-frankfurt.de).