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Fair Division of Indivisible Goods

Summary: We introduce fundamental ideas of fair division for the indivisible setting. Here multiple items
have to be assigned. Unlike in cake cutting, items are indivisible, i.e., each item can be assigned to at most
one agent. We consider relaxations of classical fairness notions and explore their computation. We also
consider efficiency in conjunction with fairness.

Resources:

� Fair Division of Indivisible Goods: A Survey G. Amanatidis, G. Birmpas, A. Filos-Ratsikas, A. A.
Voudouris https://arxiv.org/pdf/2202.07551.pdf

� Trends in computational social choice. Chapter 12 – Approximation Algorithms and Hardness Results
for Fair Division with Indivisible Goods.

� Tutorial on Recent Advances in Fair Resource Allocation, Rupert Freeman and Nisarg Shah https:

//www.cs.toronto.edu/~nisarg/papers/Fair-Division-Tutorial.pdf

� Further readings in the references.

1 Setting

We are given a set ofm indivisible resources, a.k.a. items or goods, G = {g1, . . . , gm}, and a setN = {1, . . . , n}
of n agents.

Definition 1 (Allocation). An allocation A is a partition of G into disjoint sets, each of them assigned to
at most one agent. For each i ∈ N , we denote by Ai ⊆ G the bundle (that is, the set of items) received by
agent i in the allocation A.

Usually, the allocation is also asked to be complete, that is, ∪iAi = G.

Agents’ valuations. Agents have preferences over possible bundles they might receive. Preferences are
usually quantifiable and are expressed by means of valuations functions.

Definition 2 (Valuations). The valuation function of agent i is a mapping vi : 2
G → R≥0.

We will mostly focus on valuation functions that are additive. The results we provide hold only for additive
valuations unless specified otherwise.

Definition 3 (Additive Valuations). A valuation function v : 2G → R≥0 is called additive if for each X ⊆ G,
v(X) =

∑
g∈X v({g}).

For our convenience, in what follows we will write v(g) instead of v({g}).

Example 1. Consider the example of an instance with additive valuations depicted in Table 1. We have
three agents and five items. The depicted allocation gives a value of 17 to agent 1, 12 to agent 2, and 3 to
agent 3.

2 Fairness Criteria

In this section, we reintroduce some fairness criteria from cake cutting. We will see that the solutions we
defined are no longer guaranteed to exist. Therefore, we introduce some relaxations to circumvent this
problem.
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g1 g2 g3 g4 g5

Agent 1 15 3 2 2 6

Agent 2 7 5 5 5 7

Agent 3 20 3 3 3 3

Table 1: An example of additive valuations. Line i corresponds to agent i. Circles correspond to the allocated
items in a possible (complete) allocation.

2.1 Definitions

The proportional share of agent i is given by PSi =
vi(G)
n .

Definition 4 (Proportionality). An allocation A is called proportional (PROP) if each agent receives at
least her proportional share, that is, ∀i ∈ N it holds

vi(Ai) ≥ PSi .

Also redefining envy-freeness is straightforward.

Definition 5 (Envy-freeness). An allocation A is called envy-free (EF) if for each i, j ∈ N it holds

vi(Ai) ≥ vi(Aj) .

Observe that for indivisible items EF =⇒ PROP, and there might exist allocations which are PROP but
not EF.

Unfortunately, EF and PROP allocations may not exist.

Example 2. Let us consider two agents and one valuable (positively valued by both agents) item. No matter
who receives the item the resulting allocation is neither EF nor PROP.

Such an impossibility holds even when m > n, see our example in Table 1. Indeed, this instance does not
admit any envy-free or proportional allocation. Consider agent 3. She must get at least {g1} or {g2, g3, g4, g5}.
The latter case, leaves one item to be allocated to either agent 1 or 2 which cannot lead to a proportional
allocation. On the other hand, if agent 3 gets g1, agent 1 must receive at least three of the remaining four
goods and 2 must get at least two, which is not possible.

Due to this impossibility result, relaxed versions of EF and PROP have been introduced and studied.

Definition 6 (Proportionality up to one Good). An allocation A is called proportional up to one good
(PROP1) if, for each i ∈ N , either Ai = G or there exists g ∈ G \Ai

vi(Ai ∪ {g}) ≥ PSi .

Notice that vi(Ai ∪ g) = vi(Ai) + vi(g) when valuations are additive.

Definition 7 (Envy-Freeness up to one Good). An allocation A is called envy-free up to one good (EF1)
if, for each i, j ∈ N , either Aj = ∅ or there exists g ∈ Aj such that

vi(Ai) ≥ vi(Aj \ {g}) .

Example 3. The allocation depicted in Table 1 is an EF1 allocation.
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Remark Clearly, EF =⇒ EF1 and PROP =⇒ PROP1.

Proposition 1. Any EF1 allocation is also PROP1.

Proof. Let us show the statement for agent i. Since i is EF1, for each j ∈ N , with Aj ̸= ∅, there exists
gj ∈ Aj such that

vi(Ai) ≥ vi(Aj \ {gj}) .

Summing up for all i ∈ N , and by additivity, we get

n · vi(Ai) ≥ vi(Ai) +
∑
j ̸=i

(vi(Aj)− vi(gj)) = vi(G)−
∑
j ̸=i

vi(gj) ,

and therefore vi(Ai) ≥ PSi −
∑

j ̸=i vi(gj)

n . If every Aj = ∅, then Ai = G making the allocation proportional

for i. Otherwise, by selecting g∗ = argmaxg∈G\Ai
vi(g), we have vi(Ai) ≥ PSi − (n−1)vi(g

∗)
n ≥ PSi − vi(g

∗),
and hence agent i is PROP1.
Applying the same argument to all the agents the statement follows.

Proposition 2. There exist allocations that are PROP1 but not EF1.

Proof. Exercise.

3 Existence and Computation of EF1 and PROP1 Allocations

let us discuss the computation of EF1 (and hence PROP1) allocations for additive and monotone valuation
functions.

3.1 Round-Robin Procedure

We show that, thanks to a Round-Robin procedure, EF1 allocations always exist for additive valuations and
can be computed in polynomial time.
Let us first consider general sequential algorithms. Roughly speaking, in a sequential allocation of items, we
create a vector (sequence) s = (s1, . . . , sm) where the component sh corresponds to the agent who will select
her most preferred item at the h-th round of the procedure. The vector s is also known as picking sequence.

Sequential allocation algorithm. A sequential allocation algorithm takes as input a picking sequence
s, the goods G, the agents N , and their valuations. The algorithm proceeds as follows:

� A ← (∅, . . . , ∅)

� For h = 1, . . . ,m

– i← sh

– g∗ ← argmaxg∈G vi(g)

– Ai ← Ai ∪ {g∗}, G ← G \ {g∗}

The Round-Robin procedure is the sequential allocation algorithm executed with a picking sequence of length
m in the form s = (1, . . . , n, 1, . . . , n, 1, . . . ), for a fixed ordering 1, . . . , n of the agents.

Example 4. The allocation in Tab. 1 is the result of Round-Robin for the ordering 1, 2, 3.

Theorem 3. The Round-Robin procedure outputs an EF1 allocation when agents’ valuations are additive.
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Proof. Let us split the algorithm into rounds: We call Round k the k-th occurrence of 1, . . . , n in the picking
sequence s = (1, . . . , n, 1, . . . , n, 1, . . . ). Therefore, in a round k, the agents receive a k-th item, if possible.
Notice that in the last round it is possible that not all the agents have the opportunity to select an item.
We start by noticing that the first agent in the ordering (which is 1) is EF since the item she gets in a Round
k is at least as good as the item selected by any other agent in the same round.
Let us consider agent i and remove the first i− 1 agents in the sequence s (let’s call this new sequence s(i))
and remove the items these agents selected in the first round. By running Round-Robin with s(i) on the
refined set of goods i is the first agent in the sequence. Notice that s(i) is a Round-Robin sequence for
the ordering i, i + 1, . . . n, 1, . . . i − 1, and hence we get an EF allocation for i. By reassigning the items we
removed to their owner we get an EF1 allocation. Moreover, this allocation coincides with the outcome of
the original Round-Robin with the sequence s, and therefore the statement follows.

3.2 Envy-Graph and Envy-Cycle Elimination

Is it possible to achieve EF1 for more general valuation functions?

Definition 8 (Monotone Valuations). A valuation function v : 2G → R≥0 is called monotone if for each
Y ⊆ X ⊆ G, v(Y ) ≤ v(X).

For our purposes we need to introduce the following instrument:

Definition 9 (Envy-Graph). Given a (partial) allocation A, the envy graph for the allocation A is defined
as follows:

� each agent i is represented by a node, for simplicity we call the node i;

� there exists a directed edge (i, j) if and only if vi(Aj) > vi(Ai).

Note that the directed edge represents the envy of i towards j. Hence, if i is a source in the envy-graph, she
is not envied by any other agent.
The envy-graph is an extremely useful tool to reduce envy in an allocation. In fact, if there exists a cycle
we can reduce the envy by trading bundles along the cycle. Formally, let us assume that an allocation A
induces a cycle C = i1, i2, . . . , ik, i1 involving k (w.l.o.g.) distinct agents. Trading the bundles along the
cycle means we create a new allocation A′ where A′

i = Ai+1 for each i = 1, . . . k − 1 and A′
k = A1 while

all the other bundles remains the same. By trading bundles along a cycle we reduce the number of edges
in the envy-graph without creating new ones. More importantly, trading along an envy-cycle preserves the
EF1 property, as formalized in the following lemma:

Lemma 4. Given an EF1 allocation A, if the envy-graph has a cycle C, then the allocation A′ obtained from
A by trading the cycle C is also EF1.

Proof. From the perspective of agents who are not in the cycle, the allocation is not changing significantly
(we are only changing the owners of the bundles).
For the agents in the cycle, the value of their bundle increases. It is higher than the value attributed to the
bundle they previously had. Therefore, in the new allocation, any agent i in the cycle does not envy her
previous bundle while the previous edges (i, j) can only disappear.

The envy-cycle elimination protocol. The envy-cycle elimination starts from an empty allocation
(which is clearly EF1). At each round, one available item g is allocated to some agent i who is not envied
by any other (which is a source node in the envy-graph). This maintains the EF1 property since i was note
envied before inserting g. At the end of the round, to guarantee the existence of source nodes, if a cycle
appears in the envy-graph, bundles along the cycle are traded. Therefore, at the end of each round there is
no cycle in the envy-graph. Since EF1 is preserved (by Lemma 4) at each step of the procedure, the final
allocation is EF1.
Formally, envy-cycle elimination can be summarized as follows:
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� A ← (∅, . . . , ∅)

� Sort goods from g1 up to gm

� For h = 1, . . . ,m

– i← a sink node in the envy-graph

– Ai ← Ai ∪ {gh}, G ← G \ {gh}

– update the envy-graph

– While there exists cycle C in the envy-graph:

* trade along cycle C

Theorem 5 (Lipton et al. 2004). If agents’ valuations are monotone, then envy-cycle elimination outputs
an EF1 allocation.

Proof. The proof proceeds by induction as explained above. At each step the EF1 property is satisfied.

What is the complexity of envy-cycle elimination? This procedure guarantees the existence of an EF1
allocation for monotone valuations; however, the time complexity of the procedure is not clear. This is
closely related to the representation and the knowledge we have of the valuation functions.

At every iteration of the FOR-loop, after adding in the next item, the envy graph has to be updated, and
therefore all agents’ valuation functions have to be evaluated on the new bundle. The evaluation cannot
be considered an atomic operation unless we have an oracle. Let us denote by T ∗ the time complexity for
determining the value of any bundle by any agent. Then the runtime caused by the parts of the FOR loop
not including the WHILE loop is O(mnT ∗).

To bound the overall number of cyclic trades within the WHILE loop, note that by performing a cycle, at
least two edges disappear in the envy-graph. How many edges are introduced during the whole execution? In
every iteration of the FOR loop at most n−1 new edges are introduced. Hence overall at most O(mn) edges
are introduced, and thus the number of cycles performed is also at most O(mn). Performing a cycle can
be done in O(n2), e.g., by using adjacency matrices for graph representation. The complexity of envy-cycle
elimination is thus O(mnT ∗ + n3m), and this can be considered polynomial-time, since T ∗ is an intrinsic
value depending on the given valuations.

4 EF1 and Efficiency

We now turn our attention again to additive valuations. Since EF1 allocations do always exist, we may try
to ask for further properties for such a solution. A compelling notion is the one of efficiency, usually defined
as Pareto optimality. Roughly speaking, we do not want to create waste while achieving EF1.
We have seen that maximizing welfare functions such as the utilitarian or the Nash social welfare leads to
Pareto optimal allocations in cake cutting. It remains true also for indivisible goods (it is sufficient to apply
the very same arguments). Interestingly, it turns out that any allocation maximizing Nash social welfare is
also particularly fair.

Remark. There are scenarios in which the maximum Nash social welfare is 0. Consider for example the
case of two agents and an item. In this case, we at first maximize the number of agents having positive
value for their bundle, then maximize the Nash welfare among these agents. We call such allocations Nash
optimal.

Theorem 6. Let A be a Nash optimal allocation, then A is also EF1.
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Proof. Let be A a Nash optimal allocation.
Let us assume NSW(A) ̸= 0, which means, every agent has a positive value for her bundle, and therefore
no bundle is empty. It is possible to show that the statement holds true even if NSW(A) = 0 with a careful
adaptation of the proof.
We want to show that for every i, j ∈ N , there exists g ∈ Aj such that vi(Ai) ≥ vi(Aj)− vi(g).
If vi(Aj) = 0 the claim trivially follows since i does not envy j.
Otherwise, since A is Nash optimal, by moving any item g ∈ Aj to Ai the Nash social welfare cannot improve.
Hence,

vi(Ai) · vj(Aj) ≥ (vi(Ai) + vi(g)) · (vj(Aj)− vj(g)) ⇔
vj(g) · (vi(Ai) + vi(g)) ≥ vi(g) · vj(Aj)

showing that, for each g ∈ Aj

vi(Ai) + vi(g) ≥
vi(g)

vj(g)
· vj(Aj) . (1)

Let us select g∗ = argming∈Aj ,vi(g)>0
vj(g)
vi(g)

. Notice that g∗ is well defined; in fact, there must exist at least

one positively valued good in j’s bundle according to i’s valuations because vi(Aj) > 0. By definition of g∗,
it holds

vj(g
∗)

vi(g∗)
≤

∑
g∈Aj

vj(g)∑
g∈Aj

vi(g)
≤ vj(Aj)

vi(Aj)

and hence, by inverting terms,
vi(Aj)
vj(Aj)

≤ vi(g
∗)

vj(g∗) .

This inequality together with (1)) shows that g∗ ∈ Aj is such that vi(Ai) ≥ vi(Aj)− vi(g
∗), concluding the

proof.

In conclusion, for additive valuations there exists an allocation that is simultaneously EF1 and Pareto optimal.

Proposition 7. Under additive valuations, an allocation that is simultaneously EF1 and PO always exists.

This is only an existential result, computing a maximum NSW allocation is in general hard, even for two
agents with identical valuations.
So far we discussed the existence of EF1 and hence PROP1 allocations. Are there any other meaningful
relaxations for EF and PROP?

5 Beyond EF1 Allocations – Envy-Freeness up to any Good

EF1 represents in first approximation a good relaxation of the EF fairness concept. While we know that
EF =⇒ EF1, we see an example in which an EF1 allocation might be quite unfair.

Example 5. Consider a fair division instance with two agents, three goods, and additive valuations depicted
in Table 2.
Let us consider the allocation A1 = {g1, g3} and A2 = {g2}. This allocation is EF1 as agent 2 is allowed to
remove g1 to eliminate the envy. However, according to agent 2, v2(A1) = 13 and v2(A2) = 3 which is a
quite large gap between the two bundles.

Roughly speaking, in the definition of EF1, allowing to remove some good could be too “generous”, what
about the removal of any?

Definition 10 (Envy-freeness up to Any Good). An allocation A is called envy-free up to any good (EFX)
if, for each i, j ∈ N , either Aj = ∅ or for every g ∈ Aj such that vi(g) > 0 it holds

vi(Ai) ≥ vi(Aj \ {g}) .
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g1 g2 g3

Agent 1 10 2 1
Agent 2 10 3 2

Table 2: Valuations in Example 5.

Example 6. Consider the allocation in Table 1. The allocation is EF1 but not EFX.
Consider for the same instance the allocation A1 = {g4, g5}, A2 = {g2, g3}, A3 = {g1}. This is an EFX
allocation.

The following implications easily follow.

Proposition 8. EF =⇒ EFX =⇒ EF1

It is also easy to see that backward directions do not hold.

5.1 On EFX Existence

Unfortunately, the existence of EFX-allocations is unknown, even for additive valuations! It is only known
to be guaranteed for special cases like two or three agents or identical valuations.

Two agents. We show the existence of EFX allocations for two agents.

Theorem 9. EFX allocations always exists for n = 2 and can be efficiently computed.

Proof. We show the existence by providing an algorithm that is a discrete version of the CutAndChoose
protocol.

� Agent 1 computes a partition (A1, A2) such that v1(A1) ≥ v1(A2) and v1(A1 \ {g}) ≤ v1(A2) for each
g ∈ A1 such that v1(g) > 0;

� Agent 2 selects the most favorite bundle for her;

� Agent 1 gets the remaining bundle.

The resulting allocation is EFX. Indeed, agent 2 does not envy agent 1. Agent 1, no matter which bundle
she receives, is EFX by the conditions on the two bundles. We only need to clarify how to compute such a
partition.
To compute the partition (A1, A2) we proceed as follows1:

� Sort goods in a non-increasing order of values according to 1, that is, v1(g1) ≥ v1(g2) ≥ . . . ≥ v1(gm)

� (A1, A2)← (∅, ∅)

� allocate items in the ordering g1 . . . gm to the bundle Ai, i = 1, 2, of minimum value for agent 1.

Assume without loss of generality that v1(A1) ≥ v1(A2), otherwise we change names to the bundles. We
have that v1(A1 \ {g}) ≤ v1(A2) for each g ∈ A1, such that v1(g) > 0, must hold. Notice that this means
that for 1, receiving A2 would make her EFX. Hence, it is sufficient to show that v1(A1 \ {g∗}) ≤ v1(A1) for
g∗ ∈ A1 such that v1(g

∗) > 0 and g∗ is the least valued good in A1. This holds true since before inserting
g∗ in A1 the value of A1 was smaller or equal to the value of A2, according to 1. Furthermore, g∗ is the
smallest positively valued good in A1, therefore the statement follows.

1Notice we will use the same idea in the next paragraph for identical valuations.
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Identical additive valuations. Now we assume that the agents have identical additive valuations, that
is, vi = v for each i ∈ N where v is additive.
We start by showing that EFX allocations always exist in this setting.

Theorem 10. If agents have identical valuations, every Nash optimal allocation is EFX.

Proof. Assume A is Nash optimal. We denote by v the valuation function of the agents. Therefore, moving
any positively valued g from any Aj to any Ai cannot strictly improve the Nash social welfare. Formally,

v(Ai) · v(Aj) ≥ (v(Ai) + v(g)) · (v(Aj)− v(g)) ⇔
v(g) · (v(Ai) + v(g)) ≥ v(g) · vj(Aj) .

Since v(g) > 0, we have for each i, j and g ∈ Aj , v(Ai) ≥ vj(Aj)− v(g) and the statement follows.
Notice we assumed that the NSW is not 0. If so, it means that at least one agent has no item in her bundle,
and hence there are not enough items for the agents. Recall that in this case, we assume that we first
maximize the number of agents with a positive value for their bundle and then the Nash welfare among
those agents. Such an allocation assigns each agent at most one item, and hence it is EFX.

Unfortunately, it is hard to compute such an allocation, even for n = 2.

Theorem 11. It is NP-hard to compute a Nash optimal allocation, even with identical valuations and n = 2.

Proof. Reduction from Partition.

Partition

Input: A set X = {x1, . . . , xt} of positive values

Problem: Does there exist a partition of X, i.e. (S,X \ S), s.t.
∑

x∈S x =
∑

x∈X\S x?

Reduction:
We create a far division instance with two agents and identical valuations v. We set (with an abuse of
notation) G = X and v(x) = x.
It is sufficient to notice that, for identical valuation, the more balanced the values of the two bundles the
higher the Nash welfare. Therefore, denoted by z =

∑t
i=1 xi, a partition exists if and only if the maximum

Nash welfare is of z/2.

Despite this negative result, it is still possible to compute an EFX allocation with good welfare guarantees.
We next consider a greedy algorithm to compute an EFX allocation.

Greedy algorithm for identical valuations:

� A ← (∅, . . . , ∅)

� sort items g1, . . . , gm in a non-increasing order, that is, v(g1) ≥ v(g2) ≥ . . . ≥ v(gm)

� For h = 1, . . . ,m

– i← argmini∈N v(Ai) (break ties arbitrarily)

– Ai ← Ai ∪ {gh}

Theorem 12 (Barman et al. 2018). The greedy algorithm for identical valuations computes an EFX alloca-
tion which is an 1.061 approximation in terms of Nash social welfare.
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Proof. We only prove EFX. In particular, at every iteration EFX is satisfied.
At the beginning, the allocation is empty, and therefore, EFX.
Consider an arbitrary iteration where good g is allocated to, say, agent i. Before allocating g no one envies
i since she has the minimum valued bundle and the allocation is EFX. For every j, k ̸= i, after allocating g,
the allocations remains EFX if i is not considered. Let us now consider i and observe that no j EFX-envies
i since g is the minimum item in the new bundle (the algo introduces items in a non-increasing order) and
before introducing g so one was envying i. On the other hand, also i does not EFX-envy any j, since her
bundle has increased.

6 Maximin-Share

The Maximin-Share is a relaxation of PROP. Motivated by the question of what can we guarantee in the
worst case to the agents, the rationale of this concept is to think of a generalization of the well-known
CutAndChoose protocol to multiple agents as follows:
Suppose that agent i is asked to partition the goods into n bundles and then the rest of the agents choose a
bundle before i. In the worst case, agent i will be left with her least valuable bundle. Hence, a risk-averse
agent would choose a partition that maximizes the minimum value of a bundle in the partition. This value
is called the maximin share of agent i, and for n = 2, it is precisely what he could guarantee to himself in
the discrete form of the CutAndChoose protocol, by being the cutter. The objective then is to find an
allocation where every agent receives at least his maximin share.
Let us denote by Πn(G) the set of all possible allocations of goods in G among n agents.

Definition 11 (Maximin share). The maximin share of agent i is given by

µi = µi(n, vi,G) = max
A∈Πn(G)

min
j

vi(Aj) .

An allocation is MMS if every agent receives at least her maximin share.

Example 7. Consider the instance in Table 1. The maximin shares of the agents are as follows: µ1 = 6,
µ2 = 7, and µ3 = 6. The allocation A1 = {g4, g5}, A2 = {g2, g3}, A3 = {g1} is MMS.

Properties.

� PSi ≥ µi. In fact, PSi is the average value of n bundles for i while µi is the minimum value of n
bundles, for some specific allocation. Therefore, the inequality holds true.

� Monotonicity. µi(n− 1, vi,G \ {g}) ≥ µi(n, vi,G) for any g ∈ G.
Consider a partition of G that attains the maximin share of i. Let A be this partition and assume
g ∈ A1. Consider the remaining partition (A2, . . . , An) and allocate goods in A1 \ {g} arbitrarily,
obtaining a partition (B2, . . . , Bn). This is a (n− 1)-partition of G \ {g} where the value of agent i for
any bundle is at least µi. Monotonicity follows.

6.1 Existence and Computation

Let us start by noticing that by definition, an MMS allocation always exists under identical valuations (the
allocation which has minimum value µi is an MMS allocation).
Although the maximin share is a relaxation of the proportional share, it is still not guaranteed to exist.
However, a good portion of work in fair division has focused on good approximations. An allocation A
is an α approximation of MMS if for each i, vi(Ai) ≥ α · µi. The best-known approximation so far is of
3/4 + 1/(12n).
We next present a simple algorithm achieving an 1

2 -approximation.
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An 1
2 -approximation for MMS

� For each i ∈ N compute PSi for the instance N ,G, {vi}i∈N

� while there exist i and g such that vi(g) ≥ PSi

2

– assign g to i

– N ← N \ {i}, G ← G \ {g}
– update the proportional share of each remaining agent in the new instance N ,G, {vi}i∈N

� Run Round-Robin on the remaining instance N ,G, {vi}i∈N

Theorem 13 (Amanatidis et al. 2017). The algorithm outputs an 1
2 -approximation for MMS.

Proof. Let A be the outcome of the approximation algorithm.
Consider an iteration k of the while loop. At this point, the algorithm has allocated k − 1 items and k − 1
agents have been removed. Let N and G be the initial set of goods and agents, and let N ′ and G′ be the
current set of goods and agents. Let i be the agent receiving the item g in the current iteration, agent i has
a proportional share of PS′i (the proportional share for N ′ and G′).
Applying monotonicity k − 1 times, we have µi(n− k + 1, vi,G′) ≥ µi(n, vi,G); moreover, PS′i ≥ µi(n− k +
1, vi,G′). Therefore i gets at least half of her true maximin share.
Let us now consider the agents involved in Round-Robin. Let N ′′,G′′, {vi}i∈N be the instance at the
beginning of Round-Robin. Notice that for no agent i ∈ N ′′ there exists a good g ∈ G′′ such that vi(g) ≥
PS′′i /2. Moreover, by monotonicity, we have µi(|N ′′|, vi,G′′) ≥ µi(n, vi,G) for each i.
Round-Robin provides an EF1 (and hence PROP1) allocation for the instance N ′′,G′′, {vi}i∈N . Therefore,
for any i ∈ N ′′ there exists g ∈ G′′ \Ai such that

vi(Ai) ≥ PS′′i − vi(g) ≥ PS′′i /2 ≥ µi(|N ′′|, vi,G′′)/2 ≥ µi(n, vi,G)/2 ,

and the statement follows.
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