Algorithmic Game Theory

Winter Term 2022/2023

Prof. Dr. Martin Hoefer, Dr. Giovanna Varricchio Conrad Schecker

Assignment 12

Exercise 12.1.

Consider the cake-cutting problem on a cake C with valuation functions v_1, \ldots, v_n and denote the set of possible allocations by $\mathcal{A}(C)$. The space of Nash optimal allocations is then given by $\arg \max_{\mathcal{A} \in \mathcal{A}(C)} \{NSW(\mathcal{A})\}.$

- a) Construct an instance for the cake-cutting problem with the following constraints:
 - There is an allocation $\mathcal{A}' \in \mathcal{A}(C)$ that is EF and PO, but $\mathcal{A}' \notin \arg \max_{\mathcal{A} \in \mathcal{A}(C)} \{NSW(\mathcal{A})\}$.
 - There is an allocation $\mathcal{A}^* \in \arg \max_{\mathcal{A} \in \mathcal{A}(C)} \{NSW(\mathcal{A})\}$ that is both EF and PO.

Prove the correctness of your construction.

b) For any $i \in \mathcal{N}, \lambda_i > 0, A_i \subseteq C$, let

$$v_i'(A_i) := \lambda_i \cdot v_i(A_i)$$

denote valuation of agent *i* for A_i , scaled by a factor of λ_i .

Prove that the space of Nash optimal allocations for valuations v'_1, \ldots, v'_n is identical to the space of Nash optimal allocations for valuations v_1, \ldots, v_n .

Exercise 12.2.

Prove that an allocation obtained with the Selfridge-Conway protocol is not necessarily Paretooptimal. Explain the allocation that is chosen by the protocol in detail!

Exercise 12.3.

Consider fair division of indivisible goods where all agents have additive, binary valuations, i.e., $v_i(g) \in \{0,1\}$ for all $i \in \mathcal{N}, g \in \mathcal{G}$. Let $\mathcal{A} = (A_1, \ldots, A_n)$ be an allocation that maximizes Nash social welfare. You may assume that under all such allocations, \mathcal{A} first maximizes the number of agents having a positive valuation and then the Nash social welfare among these agents.

Prove the following statements:

- a) For every $j \in \mathcal{N}$ and $g \in A_j$ with $v_j(g) = 0$, it holds $v_i(g) = 0$ for all $i \in \mathcal{N}$.
- b) Let $i, j \in \mathcal{N}$. If i envies j, then it holds $v_i(A_j) = v_i(A_i) + 1$.

Issued: Jan 31, 2023 Due: Feb 07, 2023, **10:00h**

(3 + 2 Points)

(3 Points)

(2 + 2 Points)

Exercise 12.4.

Consider the Round-Robin procedure for fair division of m indivisible goods.

- a) For which number of goods m is the procedure incentive-compatible? Prove your answer.
- b) We consider another sequencial algorithm with sequence $s = (s_1, \ldots, s_m)$ that has the following properties:
 - For every $k \in \{1, \ldots, \lfloor \frac{m}{n} \rfloor\}$, the partial sequence $(s_{n(k-1)+1}, s_{n(k-1)+2}, \ldots, s_{n \cdot k})$ is an arbitrary permutation of \mathcal{N} , i.e., it contains all n agents in an arbitrary order.
 - All the components of the remaining partial sequence $(s_n \lfloor \frac{m}{n} \rfloor + 1, s_n \lfloor \frac{m}{n} \rfloor + 2, \dots, s_m)$ are pairwise distinct.

Prove that this algorithm produces an EF1 allocation under additive valuations.