Algorithmic Game Theory

Winter Term 2022/2023

Prof. Dr. Martin Hoefer, Dr. Giovanna Varricchio Conrad Schecker

Algorithms and Complexity

Assignment 7 Issued: Dec 06, 2022
Due: Dec 13, 2022 Dec 13, 2022, 10:00h

This is the last assignment that is relevant for the first part of this course.

Exercise 7.1. $(1 + 4 + 2 \text{ Points})$

Consider the following multi-commodity Wardrop game. The graph and the latency functions are given as depicted below. There are two commodities, (s_1, t_1) with $r_1 = 0.4$ and (s_2, t_2) with $r_2 = 0.6$.

a) Consider the following flow: All players of commodity 1 use the only possible path. The players of commodity 2 split as follows: A total mass of 0.4 uses the direct edge from s_2 to t_2 and the rest uses the upper path.

Calculate the social cost for the given profile.

- b) Calculate a Wardrop equilibrium, the socially optimal flow, and the prices of anarchy and stability.
- c) Now assume that the players in every commodity form a coalition and chose their paths in such a way that they minimize the total cost of the population in their respective commodity (this model is also called atomic-splittable routing game).

Calculate the equilibrium flow and the social cost of the equilibrium flow for this situation.

Exercise 7.2. $(3 + 3 \text{ Points})$

a) Construct an equal-sharing game with a pure Nash equilibrium S and a socially optimal state S^* such that

$$
\frac{\mathrm{cost}(S)}{\mathrm{cost}(S^*)} = n.
$$

Argue in one sentence why S is a pure Nash equilibrium.

b) Prove that equal-sharing games are $(n, 0)$ -smooth, i.e. that the price of anarchy for coarsecorrelated equilibria is at most n.

We consider the following model for a vertex cover resource buying game:

There is an undirected graph $G = (V, E)$. Each edge $e \in E$ is a player that needs to be covered. The vertices in V are resources. Every $v \in V$ has a cost of $c_v \geq 0$. Every $e \in E$ chooses at least one of its incident vertices. We denote the choice of e by S_e .

We consider the natural **equal sharing and arbitrary sharing** variants of this game. In the equal sharing variant, every v that is chosen by at least one edge becomes bought. The cost c_v is shared equally by all players choosing v. In the arbitrary sharing variant, v is bought if the sum of all payments of incident players for a node v reaches c_v – otherwise, v is not bought, and every $e \in E$ with $v \in S_e$ suffers infinite cost.

In both variants, it is easy to see that the set of resources bought in a pure Nash equilibrium (social optimum state) represents a(n optimal) vertex cover.

Let $n = |E|$ denote the number of players. Prove the following statements for pure Nash equilibria:

- a) For both variants, there are instances where the Price of Anarchy is at least n .
- b) For the equal sharing variant, there is an instance where the Price of Stability is arbitrarily close to the *n*-th harmonic number \mathcal{H}_n .
- c) For the arbitrary sharing variant, the Price of Stability is exactly 1.