Algorithmic Game Theory

Winter Term 2022/2023

Prof. Dr. Martin Hoefer, Dr. Giovanna Varricchio Conrad Schecker

Assignment 6

Exercise 6.1.

The following (3×3) bimatrix denotes **utilities** for both players in all states in a stategic game:

Give an example for each of the following equilibria concepts for this game:

- a) a mixed Nash equilibrium.
- b) a correlated equilibrium that is not a mixed Nash equilibrium.
- c) a coarse-correlated equilibrium that is not a correlated equilibrium.

Exercise 6.2.

Consider a finite (cost minimization) game Γ with the set $\mathsf{PNE}(\Gamma)$ of pure Nash equilibria, and let \mathcal{V} be a distribution over states of Γ .

- a) Suppose Γ has pure Nash equilibria and \mathcal{V} is a distribution over them, i.e. $\mathsf{PNE}(\Gamma) \neq \emptyset$ and for every state \tilde{s} with $\mathbb{P}_{s \sim \mathcal{V}}(s = \tilde{s}) > 0$, it holds $\tilde{s} \in \mathsf{PNE}(\Gamma)$. Prove: \mathcal{V} is a correlated equilibrium for Γ .
- b) Prove: If Γ is a symmetric (2×2) bimatrix game and \mathcal{V} is a coarse-correlated equilibrium for Γ , then \mathcal{V} is also a correlated equilibrium for Γ .

Is this statement true even for asymmetric (2×2) bimatrix games?

Remark: In a symmetric two-player game, both players have the same set of strategies and identical costs in corresponding states, i.e. for all $(x, y) \in S_1 \times S_2$, there is a valid state $(y, x) \in S_1 \times S_2$ and it holds $c_1(x, y) = c_2(y, x)$.

0 А 0 1 0 1 0 0 В 0 1 0 0 1 0 С 0 0 1

Nov 29, 2022 Issued: Due: Dec 06, 2022, 10:00h

(1 + 4 + 3 Points)

(1 + 4 Points)

Exercise 6.3.

Consider the following modification of the game given in exercise 5.1:

		E		F		G	
		10		10			100
А							
	10		100		1		
		100		10			101
В							
	10		10		10		
		1		10			10
С							
	1		100		10		

- a) Prove that every finite sequence of states that contains the strictly dominated strategy G has a positive swap-regret.
- b) Construct a sequence of states with the following properties:
 - The no-swap-regret property is fulfilled for both players.
 - The average strategy of the sequence doesn't converge to a mixed Nash equilibrium.
 - The sequence does not contain strictly dominated strategies.

Prove the correctness of your construction.

Hint: Like in exercise 5.1, the sequence should be arbitrarily expandable: For any given $T' \in \mathbb{N}$, your sequence should be expandable to length $T \ge T'$.

c) Argue in at most two sentences how your sequence from b) could contain a strictly dominated strategy, but still fulfill the other two required properties.