
Algorithmic Game Theory - Fair Division Winter 2022/23

Lectures 22 and 23: The cake-cutting problem

Lecturers: Prof. Dr. Martin Hoefer, Dr. Giovanna Varricchio Scribes: Dr. Giovanna Varricchio

Summary: In the cake-cutting problem we are given a divisible resource, a.k.a. a cake, which has to be
split among n agents. Each agent has some preference over different pieces and the goal is to split the cake
among agents in a fair manner. In this lectures, we first introduce two criteria for establishing fairness: we
define the notion of proportionality and of envy-freeness and discuss their existence and computation. We
also have a look into further desirable properties other than fairness; namely, Pareto and Nash optimality.
Finally, we give a short overview on equitability and its computation.

Resources:

• Handbook of computational social choice, F. Brandt, V. Conitzer, U. Endriss, J. Lang, and A.D.
Procaccia, 2016, Cambridge University Press (Chapther 13, Cake Cutting Algorithms).

• Tutorial on Recent Advances in Fair Resource Allocation, Rupert Freeman and Nisarg Shah https:

//www.cs.toronto.edu/~nisarg/papers/Fair-Division-Tutorial.pdf

• Further readings in the references.

1 Setting

We are given a divisible resource, a cake C, which is mathematically represented by the interval [0, 1], and
a set N = {1, . . . , n} of n agents. We call a piece of cake any subset of C that it is an union of disjoint
intervals in C; a piece of cake is said to be connected if it is an interval [x, y] ⊆ C. The goal is to partition
the cake into n pieces and assign each of them to a distinct agent, which means that the cake has to be fully
allocated.

Definition 1 (Allocation). An allocation A = (A1, . . . , An) is a partition of C into pieces each of them
assigned to an unique agent. For each i ∈ N , we denote by Ai the piece received by agent i in the allocation
A. An allocation must be complete, that is, ∪i∈NAi = C.

An allocation A is said to be simple if each agent receives a connected piece of C, i.e. A is obtained by
cutting C in n− 1 points. The goal is to compute a fair allocation of the cake to the agents. We will later
define what fair means, before that, we need to introduce how agents evaluate any piece of the cake.

1.1 Agents’ valuations

We ask each agent to be able to evaluate any subset of the cake. For this reason, each agent i ∈ N is
endowed of an integrable density function fi : C → R≥0. Therefore, given any agent i ∈ N and any piece of
cake X ⊆ C, the value of agent i for X is given by

vi(X) =

∫
x∈X

fi(x)dx .

We can assume, without loss of generality, that
∫
x∈[0,1] fi(x)dx = 1, for each agent i ∈ N .

Example 1. In Figure 1, an example of density function of an agent i: fi(x) = x2 − 1
3x + 1

2 and of the
value of the piece X = [25 ,

4
5].

1

2 Lectures 22 and 23: The cake-cutting problem

0.2 0.4 0.6 0.8 1

0.5

1

fi(x)

(a) Density function of agent i: fi(x) = x2 − 1
3
x+ 1

2
.

0.2 0.4 0.6 0.8 1

0.5

1

fi(x)

vi(X)

(b) Value of piece X = [2
5
, 4
5
].

Figure 1: Example of a density function fi and valuation of a piece X.

Properties. Under the aforementioned assumptions, for each i ∈ N , vi satisfies the following:

• normalized, i.e. vi(C) = 1;

• divisible, i.e. ∀λ ∈ [0, 1] and I = [x, y] ⊆ C there exists z ∈ I such that vi([x, z]) = λ · vi([x, y]);

• additive, i.e. for any pair of disjoints intervals I, I ′ ⊂ C, vi(I ∪ I ′) = vi(I) + vi(I
′);

• non-negative, i.e. for each I ⊆ C, vi(I) ≥ 0.

(a) Divisible. (b) Additive.

Figure 2: Valuations’ properties.

REMARK! Whenever we say the value of a piece in a given allocation it is meant the value for the owner.

1.2 Query Complexity

We should consider the density functions of the agents as a possible input. This could imply infinitely
many bits for representation. In this setting, it is more reasonable to have an oracle able to reply to some
meaningful questions about agents’ valuations.

Robertson-Webb model. We assume there exists an oracle able to reply to the following two queries:

• Evali(x, y) returns vi([x, y]);

Lectures 22 and 23: The cake-cutting problem 3

• Cuti(x, α) returns y such that vi([x, y]) = α.

We, therefore, evaluate the performances of an algorithm by its query complexity, that is, the number of
queries required during its execution.

2 Fairness Criteria

In this section, we introduce some fairness criteria and discuss their relations.

2.1 Definitions

We distinguish between threshold-based and comparison-based criteria. A threshold-based criteria requires
that each agent receives at least a prefixed value for her piece of cake; a comparison-based criteria determines
the satisfaction of an agent by comparing the piece she receives with the pieces received by the others.

The most natural threshold-value one can think of is the proportional share which is the value an agent has
for the entire cake divided by the number of agents. Formally, the proportional share of agent i is given by

PSi = vi(C)
n . We assumed valuations to be normalized, thus, each agent has a proportional share of 1

n .

Definition 2 (Proportionality). An allocation A is said to be proportional (PROP) if each agent receives
at least her proportional share, that is, ∀i ∈ N it holds

vi(Ai) ≥
1

n
.

Concerning comparison-based criteria, the most reasonable one can think of is envy-freeness which requires
that no agent envies no other agent.

Definition 3 (Envy-freeness). An allocation A is said to be envy-free (EF) if for each i, j ∈ N it holds

vi(Ai) ≥ vi(Aj) .

Example 2. Let us consider a cake-cutting instance with three agents having valuations as depicted in
Figure 3. The allocation A1 = [0, 1/6], A2 = [1/6, 5/6], and A3 = [5/6, 1] is PROP and EF.

1/3 2/3 1

1

2

3
Agent 1 Agent 3

Agent 2

Figure 3: Example instance with three agents.

4 Lectures 22 and 23: The cake-cutting problem

2.2 Implications between fairness notions

Proposition 1. Any EF allocation is always PROP.

Proof. Let us show the statement for agent i. Since i is EF, for each j ∈ N it holds

vi(Ai) ≥ vi(Aj) .

Summing up for all i ∈ N we get

n · vi(Ai) ≥
∑
j∈N

vi(Aj)
(1)
= vi (∪j∈NAj)

(2)
= vi(C)

(3)
= 1 ,

and therefore vi(Ai) ≥ 1
n . Note that (1) holds because of the additive property, (2) because the cake is

completely allocated while (3) because of normalization.

Applying the same argument to all the agents the thesis follows.

Proposition 2. For n = 2, any PROP allocation is always EF.

Proof. Roughly speaking, if an agent receives a piece she values more than half, from her perspective, the
other agent is receiving less than half.

Formally, given i ∈ {1, 2}, by proportionality vi(Ai) ≥ 1
2 and therefore vi(Aj) = vi(C \Ai) ≤ 1

2 ≤ vi(Ai).

3 Existence and Computation of fairness criteria

We now discuss the existence and computation of the aforementioned fairness criteria. Let us start by
considering the simplest scenario where only two agents are involved. We will then discuss the more general
setting where the number of agents is any n ≥ 2.

3.1 Fairness for two agents – Cut and choose protocol

For two agents, where PROP⇔ EF, there exists a simple but nonetheless interesting protocol for achieving
both PROP and EF, the so-called CutAndChoose.

The protocol works as follows:

Cut: Agent 1 cuts the cake into two pieces of value 1
2 for her.

Choose: Agent 2 selects the piece she prefers the most and agent 1 receives the other.

Theorem 3. The CutAndChoose protocol outputs a proportional (and hence envy-free) allocation.

Proof. Agent 1 receives a piece of value 1
2 for him. Agent 2 select the most preferred piece whose has

necessarily value ≥ 1
2 .

And the query complexity? Only two queries! We only ask y ← Cut1(0, 12) and Eval2(0, y).

3.2 Proportionality

We now turn our attention to the computation of a proportional allocation for n agents. Proportionality is
the easiest criteria to achieve and several protocols have been defined.

Lectures 22 and 23: The cake-cutting problem 5

3.2.1 Dubins-Spainer protocol – Achieving proportionality with O(n2) queries

In this section, we introduce the Dubins-Spainer protocol also known as the MovingKnife.

Here, we pretend to move a knife along our cake starting from position 0. As soon as we reach one point
of the cake which values at least the proportional share of some agent i, we cut the cake in that point and
assign the piece to i. Then, i is removed as well as the assigned piece of cake. We then start again (from the
current position), we move the knife to the right, and find again the first position where a new agent gets
her proportional share.

Formally, let xk be the position of the knife, the MovingKnife protocol proceeds as follows:

• During the `-th iteration of the algorithm, the knife is positioned at xk = y`−1, where y0 = 0. Then,
xk is slowly (and contiguously) moved to the right.

• The agents are allowed to shout as soon as the piece [y`−1, xk] reaches their proportional share, that
is, if ∃i ∈ N such that vi([y`−1, xk]) ≥ 1

n agent i shouts; if there exists more than one such agent we
break ties arbitrarily.

• As soon as one agent shouts, that agent receives the piece of cake [y`−1, xk] and leaves the protocol, i.e.
N ← N \ {i`}. Set y` = xk. The process continues on the remaining cake and the remaining agents.

• Finally, when |N |= 1, assign [y`, 1] to the unique agents in N and terminate.

We described the MovingKnife protocol as a contiguous process over the cake. How to implement such a
process in the Robertson-Webb model? Using, at round `, Cuti(y`−1,

1
n) for all i ∈ N . Roughly speaking,

we ask to all the agents when they will shout. By taking the minimum of all these positions we know who
will be the shouter and where to cut.

Example 3. Let us give an example run of MovingKnife protocol on the instance depicted in Figure 3.

At the beginning, no agent owns any piece of cake. The protocol starts from the position xk = 0 and
asks to every agent where to cut to obtain her proportional share, i.e. the protocol asks for Cuti(0, 1/n)
for each i ∈ {1, 2, 3}, and selects the agent declaring the minimum value. Since, Cuti(0, 1/n) = 1/9,
Cut2(0, 1/n) = 1/3, and Cut3(0, 1/n) = 7/9, agent 1 is selected and receives [0, 1/9]. Now only agents 2
and 3 are involved in the process, and the knife is positioned in xk = 1/9. Since Cut2(1/9, 1/n) = 4/9 and
Cut3(1/9, 1/n) = 7/9, agent 2 receives [1/9, 4/9] and agent 3 receives [4/9, 1].

Theorem 4. The MovingKnife protocol outputs a simple and proportional allocation.

Proof. Simple: by definition of the algorithm every agent receives a contiguous piece of cake.

Proportional: by definition of the algorithm every agent (but the last one) is receiving a piece will of value
her proportional share. We need to show that the protocol never consumes the entire cake before every
agent receives one piece and the remaining of the cake is enough to guarantee the proportional share to the
remaining agents.

To this aim, we prove the following claim: at the beginning of any round ` ∈ [n − 1], let C ′ ⊆ C be the
remaining of the cake, if agent i has not received a piece of cake yet then vi(C

′) ≥ 1/n.

Let Ch = [yh−1, yh] be the piece of cake assigned at the h-th round, since i has not received the cake it means
that no such piece has value more than 1/n. Therefore, vi(C

′) = vi(C)−
∑

h<` vi(Ch) ≥ 1− (`−1)/n ≥ 1/n.

Since the above argument applies also to the agent receiving the last piece, proportionality holds also for
her.

And query complexity? At each step, we ask to the remaining agents where we should cut to give him her
proportional share. Hence, we need

∑n−1
i=1 n− i+ 1 = θ(n2) queries.

Can we do better?

6 Lectures 22 and 23: The cake-cutting problem

3.2.2 Even-Paz protocol – Achieving proportionality with O(n log n) queries

We present a recursive protocol. For simplicity, we assume n = 2k for some integer k.

Input: An interval [x, y] and n agents;

• if n = 1 give [x, y] to the agent and terminate;

• otherwise each agent i computes zi such that vi([x, zi]) = 1
2vi([x, y]);

• select z∗ the n/2-th value zi from the left in [x, y];

• Repeat on [x, z∗] with the left n/2 agents, and on [z∗, y] with the right n/2 agents.

Theorem 5. Even-Paz returns a proportional allocation.

Proof idea. Invariant on each recursion: there is enough cake for the involved players to get at least their
proportional share. By induction, at the last step, only one agent is considered and therefore she receives
her proportional share.

Query complexity: The protocol runs in O(log n) rounds; in every round each agent replies to exactly one
query → O(n log n).

Theorem 6 (Edmonds and Pruhs, 2006). Any proportional protocol needs Ω(n log n) queries in the Robertson-
Webb model.

Therefore the Even-Paz protocol is asymptotically optimal!

3.3 Envy-freeness

We have seen that the CutAndChoose protocol provides an EF allocation for two agents. In around 1960,
Selfridge and Conway (independently) constructed the same envy-free algorithm for the case of three agents.

3.3.1 Envy-freeness for three agents: The Selfridge-Conway protocol

Initialization:

• Agent 1 divides the cake into three equally-valued piecesX1, X2, X3 : v1(X1) = v1(X2) = v1(X3) = 1/3.

• Agent 2 trims the most valuable piece according to v2 to create a tie for the most valuable. For
example, we assume w.l.o.g. that X1 is the most valuable piece for agent 2.

– If v2(X1) > v2(X2) ≥ v2(X3), agent 2 removes X ′ ⊆ X1 such that v2(X1 \ X ′) = v2(X2). We
call the three pieces – one of which is trimmed – cake 1 ({X1 \X ′} ∪X2 ∪X3), and we call the
trimmings (X ′) cake 2.

– If v2(X1) = v2(X2), cake 2 is empty.

Division of cake 1:

• Agent 3 chooses one of the three pieces of cake 1;

• If agent 3 chose the trimmed piece (X1 \ X ′), agent 2 chooses between the two other pieces of cake
1. Otherwise, agent 2 receives the trimmed piece. We denote the agent i ∈ {2, 3} that received the
trimmed piece by T , and the other agent by T ;

• Agent 1 receives the remaining piece of cake 1.

Lectures 22 and 23: The cake-cutting problem 7

Division of cake 2:

• Agent T divides cake 2 into three equally-valued pieces;

• Agents T, 1, T select a piece of cake 2 each, in that order.

Have an example on the instance depicted in Figure 3.

Theorem 7. The Selfridge-Conway protocol outputs an EF allocation for three agents.

Proof. Let us denote by C1 and C2 cake 1 and 2, respectively.
Observation: The division of C1 is EF. Indeed, agent 1 always receives a piece of value 1/3 and no other
piece has a higher value; agent 2 always receives one of the most two preferred (and equally liked) pieces;
agent 3 selects the most preferred piece. Therefore, if C2 = ∅ the thesis follows.
Otherwise, let us consider the final allocation of C (that is after the division of C1 and C2 6= ∅): The agent
T who is splitting the cake is the one who will receive the remaining piece of C2; anyway, she will be EF in
the final allocation as the three pieces of C2 are equally liked. The agent selecting first is also EF in the final
allocation. It remains to show agent 1 is EF.
Agent 1 won’t envy T since 1 selects before than T the piece of C2. We need to show that agent 1 does not
envy agent T in the final division of the whole cake C.
On the one hand, T is the agent who received X1 \X ′, and {X1 \X ′} ∪ C2 = X1 and therefore no matter
which piece of C2 agent T receives, agent 1 will value the final piece of T at most 1/3 (because of the
initialization of the algorithm X1 has a value of 1/3 for agent 1); on the other hand, during the allocation
of C1, agent 1 received a piece of value 1/3 and by adding another piece from C2 cannot decrease the value
attained by 1, showing that 1 does not envy T .

3.3.2 Envy-freeness for any number of agents

What about the existence of EF allocations for general n? We will see in the next section that they always
exist. What about computation?

Theorem 8 (Aziz and Mackenzie, 2016). There exists a finite protocol for computing an EF allocation with

a query complexity of O

(
nn

nnnn)
.

Theorem 9 (Procaccia 2009). Any protocol for finding an envy-free allocation requires Ω(n2) queries in the
Robertson-Webb model.

There still is a large gap between these lower and upper bounds.

4 Efficiency

For the sake of fairness, we might produce extremely inefficient partitions of a cake, as the following example
shows.

Example 4. Assume there are two agents N = {1, 2}, f1 = U [0, 1/2] and f2 = U [1/2, 1], where U [x, y]
is the uniform distribution over [x, y]. Consider the partition where agent 1 receives [0, 1/4] ∪ [3/4, 1] and
agent 2 receives [1/4, 3/4]. Such an allocation is EF and therefore PROP; notice that both agents receive their
proportional share. However, there is a much better allocation which is still EF but both agents get a utility
of 1; namely, it is sufficient to cut the cake at x = 1/2 and assign the left side o agent 1, and the right side
to agent 2.

The just provided example might look artificial; it is not hard to verify that all the protocols we provided
so far are inefficient in the sense we are going to define in the next subsection.

8 Lectures 22 and 23: The cake-cutting problem

4.1 Pareto optimality

The most prominent definition of efficiency is given by the one of Pareto optimality. Roughly speaking, an
allocation is said to be Pareto optimal (or Pareto efficient) if there exists no other allocation where each
agent is not decreasing and at least one agent is strictly increasing her utility. Formally:

Definition 4 (Pareto optimal allocation). Given a pair of allocations A,B of the cake C, B Pareto dominates
A, if for each i ∈ N , vi(Bi) ≥ vi(Ai) and at least one of the inequalities is strict.
An allocation A of C is Pareto optimal (PO) if there is no allocation B that Pareto dominates A.

Notice that a Pareto optimal allocation always exists.
Pareto optimality is not a per se interesting property, we will look for fair allocations which also satisfy such
a property.

4.2 Nash social welfare – A way to achieve efficiency

A way to obtain Pareto optimal allocations is to use the optimization problem related to some welfare
function. It turned out that maximizing the Nash social welfare function is an extremely fair objective and
also guarantees Pareto optimality.

Definition 5. Given an allocation A of a cake C, the Nash social welfare (NSW) of A is defined as follows:

NSW(A) =

(∏
i∈N

vi(Ai)

) 1
n

.

Clearly, an allocation maximizing the Nash social welfare always exists.

Example 5. Consider the instance depicted in Figure 3 and the allocation A1 = [0, 1/6], A2 = [1/6, 5/6],

and A3 = [5/6, 1] has a Nash welfare of
(
1
2 ·

4
6 ·

1
2

) 1
3 =

(
1
6

) 1
3 . This allocation is EF but is not Nash optimal.

Consider the allocation where the first third of the cake is assigned to agent 1, the second third to agent 2,

and the remaining piece to agent 3. Such an allocation has a Nash welfare of
(
1 · 13 · 1

) 1
3 =

(
1
3

) 1
3

Proposition 10. Any allocation A maximizing the NSW is PO.

Proof. By contradiction, if an allocation B Pareto dominates A then B has strictly better NSW.

Notice that maximum Nash social welfare is scale-invariant, that is, if we divide the valuations of an agent
by a positive number this does not change the set of Nash optimal allocations.
An interesting aspect of maximum Nash social welfare allocation is that it is a good (and fair) trade-off
between maximum egalitarian and utilitarian social welfare allocation.

• Utilitarian social welfare: sum of agents’ utilities, i.e. USW (A) =
∑

i vi(Ai). The USW only focuses
on overall happiness without caring about each individual.

• Egalitarian social welfare: minimum of agents’ utilities, i.e. ESW (A) = mini vi(Ai). The ESW cares
about a specific individual without caring about others.

5 Envy-free allocation existence

In this section, we discuss the existence of EF allocations.
The existence of EF allocations is known to be related to the strong Competitive Equilibrium from Equal
Incomes (sCEEI) existence. In particular, an allocation is a sCEEI if and only if it is Nash optimal, and
any sCEEI is EF and therefore it holds true also for maximum NSW allocations. This led to the following
theorem:

Lectures 22 and 23: The cake-cutting problem 9

Theorem 11. Any maximum NSW allocation is also EF.

In what follows, we show the theorem without using the connection with the competitive equilibrium. Let’s
first have an intuition on why the statement is true.

Example 6. Consider an instance with two agents. Agent 1 has density function U [0, 1/2] while agent 2
density function U [0, 1]. Given the allocation A, where A1 = [0, 1/6] and A2 = [1/6, 1]. Notice that A is not

EF and has a Nash welfare of
√

1
3 ·

5
6 =

√
5
18 .

To prove our theorem, we show that whenever an allocation is not EF it is possible to move a piece of cake
from the bundle of the envied to the bundle of the envious agent while increasing the Nash welfare.
In the specific example, 1 envies 2 and we can move [1/6, 1/4] from A2 to A1. After this move we obtain a

new allocation A′ and the new Nash welfare is of
√

1
2 ·

3
4 =

√
3
8 and therefore the Nash welfare is increased.

Proof. Let A be a maximum NSW allocation. Let us assume by contradiction that the allocation is not EF.
Therefore, there exist i, j ∈ N such that vi(Aj) > vi(Ai). To reach a contradiction, we show there exists a
piece of cake Z ⊂ Aj such that by moving Z from Aj to Ai the NSW improves.
To this aim, let j split Aj into k equally liked pieces for her, for some k ∈ N, i.e. each of them has value
1
k · vj(Aj). Let i choose the most preferable piece, let’s call this piece Z. Therefore, the following conditions
hold:

• vj(Z) = 1
k · vj(Aj) and

• vi(Z) ≥ 1
k · vi(Aj).

Let us call A′ the allocation obtained by moving Z from Aj to Ai.
Notice that only i and j have a different utility in A and A′, respectively. Therefore, to understand which
allocation is better it sufficient to compare the product of the utilities of i and j in the two allocations.
Formally:

NSW(A′)
NSW(A)

> 1 ⇔
(∏

k∈N vk(A′k)∏
k∈N vk(Ak)

) 1
n

> 1 ⇔
(
vi(A

′
i) · vj(A′j)

vi(Ai) · vj(Aj)

) 1
n

> 1 ⇔
vi(A

′
i) · vj(A′j)

vi(Ai) · vj(Aj)
> 1

If vi(A
′
i) · vj(A′j) > vi(Ai) · vj(Aj) we get the desired contradiction.

We have

vi(A
′
i) · vj(A′j) = (vi(Ai) + vi(Z)) · (vi(Aj)− vj(Z))

≥
(
vi(Ai) +

1

k
· vi(Aj)

)(
1− 1

k

)
· vj(Aj)

= vi(Ai) · vj(Aj)−
1

k
· vi(Ai) · vj(Aj) +

1

k

(
1− 1

k

)
· vj(Aj) · vi(Aj) .

Therefore if − 1
k · vi(Ai) · vj(Aj) + 1

k

(
1− 1

k

)
· vj(Aj) · vi(Aj) > 0 we get our contradiction. Such an inequality

holds iff −vi(Ai) +
(
1− 1

k

)
· vi(Aj) > 0 if and only if k >

vi(Aj)
vi(Aj)−vi(Ai)

.

To conclude, it is possible to find a piece of cake Z such that by moving Z from Aj to Ai the NSW improves.
This is a contradiction to the optimality of A, and hence the thesis follows.

Since any maximum NSW allocation is PO we also have the following:

Proposition 12. An allocation that is simultaneously EF and PO always exists.

What about computation? It is not necessarily easy, it depends on the type of valuations we are considering.

10 Lectures 22 and 23: The cake-cutting problem

6 Another fairness notion – Equitability

To conclude our discussion on fairness, we finally introduce a different comparison-based notion that takes
into account not only pairs of pieces but also the valuations of the owners.

Definition 6 (Equitability). An allocation A is said to be equitable (EQ) if for each i, j ∈ N it holds

vi(Ai) = vj(Aj) .

Proposition 13. Equitability is incomparable with both proportionality and envy-freeness.

Proof. Consider an instance with two agents where agent 1 has a positive value only for the first half of
the cake and agent 2 values only the second half. The allocation where A1 = [12 , 1] and A2[0, 12]. Such an
allocation is neither proportional nor envy-free.
It is also possible to provide an allocation that is envy-free, and therefore proportional, but not equitable.

Theorem 14. An equitable allocation always exists.

We show the claim for only two agents.

Proof. We set g1(x) = v1([0, x]), which is an non-decreasing and contiguous function with g1(0) = 0 and
g1(1) = 1, and g2(x) = v2([x, 1]), which is a non-increasing and contiguous function with g2(0) = 1 and
g2(1) = 0. There exists x∗ such that g1(x∗) = g2(x∗). Therefore, the allocation A1 = [0, x∗] and A2 = [x∗, 1]
is equitable.

Problem: There is no way to implement an equitable protocol with a finite number of queries in the
Robertson-Webb model!

For two players, to find x∗ we can use a bisection algorithm, which possibly requires an infinite number of
refinements steps to find the location of x∗.
However, if we perform a bounded amount of such refinements we can still obtain a good approximation to
equability leading to the next theorem.
The bisection algorithm takes as input agents valuations and some value ε and proceeds as follows:

• Set a← Cut1(0, 12), b← Cut2(0, 12)

• If a = b output a and terminate

• If b < a exchange agents identities, therefore, in what follows we always have a > b

• Initialize j ← 2, c← 0

• While (1
2)j ≥ ε do

– x← Cut1(a, (1
2)j), y ← Cut2(c, (1

2)j)

– if x = y return x and terminate

– if x < y then a← x and b← y

– if x > y then c← y

– j ← j + 1

• output (a+ b)/2

An allocation A is ε-EQ if |vi(Ai)− vj(Aj)|≤ ε for each i, j.

Theorem 15 (Cechlárová and Pillárová, 2012). Using the bisection algorithm, for two agents, it is possible
to find an ε-EQ allocation with O(log(1/ε)) queries.

The above theorem can be extended to any number of agents.

Theorem 16 (Cechlárová and Pillárová, 2012). It is possible to find an ε-EQ allocation with O(n · log(1/ε))
queries.

Lectures 22 and 23: The cake-cutting problem 11

References

[1] Haris Aziz and Simon Mackenzie. A discrete and bounded envy-free cake cutting protocol for any number
of agents. In 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), pages
416–427. IEEE, 2016.

[2] Kataŕına Cechlárová and Eva Pillárová. A near equitable 2-person cake cutting algorithm. Optimization,
61(11):1321–1330, 2012.

[3] Kataŕına Cechlárová and Eva Pillárová. On the computability of equitable divisions. Discrete Optimiza-
tion, 9(4):249–257, 2012.

[4] Lester E Dubins and Edwin H Spanier. How to cut a cake fairly. The American Mathematical Monthly,
68(1P1):1–17, 1961.

[5] Jeff Edmonds and Kirk Pruhs. Cake cutting really is not a piece of cake. In SODA, volume 6, pages
271–278, 2006.

[6] Shimon Even and Azaria Paz. A note on cake cutting. Discrete Applied Mathematics, 7(3):285–296,
1984.

[7] Ariel D Procaccia. Thou shalt covet thy neighbor’s cake. In Twenty-First International Joint Conference
on Artificial Intelligence, 2009.

[8] Erel Segal-Halevi and Balázs R Sziklai. Monotonicity and competitive equilibrium in cake-cutting. Eco-
nomic Theory, 68(2):363–401, 2019.

