Algorithmic Game Theory Winter Term 2019 / 2020

Prof. Dr. Martin Hoefer, Dr. Daniel Schmand

Exercise Sheet 3

Publication: Nov 05, 2019 Solutions Due: Nov 12, 2019

Please hand in your solutions until Tuesday, November 12, 10:15h, in H9 or the letterbox between rooms 114 and 115, R.M.S. 11-15.

Exercise 3.1.

(2+3 Points)

(2+2+1 Points)

a) The bimatrix-game *battle of sexes* is defined by the following matrix.

		Zeil		I	Eintracht	
7.11			1			6
Zeıl	0			C		
				0		
			5			2
$\operatorname{Eintracht}$						
	5			1		

Write down an exact potential function for this game.

b) Construct a 2x2 bimatrix-game with a pure Nash equilibrium and without exact potential function. Prove that there is no exact potential function.

Exercise 3.2.

- a) For which α does the function $d_r : \{1, \ldots, n\} \to \mathbb{N}$ with $d_r(x) = x^2$ fulfill the α -bounded jump property?
- b) Let $d: \{1, \ldots, n\} \to \mathbb{N}$ be a positive, monotonically increasing function with *bounded slope*, i.e.

$$|d(x_1) - d(x_2)| \le K \cdot |x_1 - x_2|$$

for some constant K. Does it fulfill the (K+1)-bounded jump property?

c) Let $d: \{1, \ldots, n\} \to \mathbb{N}$ be a positive, monotonically increasing function with (K+1)-bounded jump property. Is it true that

$$|d(x_1) - d(x_2)| \le K \cdot |x_1 - x_2|$$

for all $x_1, x_2 \in \{1, \dots, n\}$?

Exercise 3.3.

(4 Points)

A weighted congestion game is called a singleton game if $|S_i| = 1$ for all $i \in N$ and $S_i \in \Sigma_i$. Prove that singleton weighted congestion games with strictly increasing delay functions d_r are ordinal potential games.

Hint: Lexicographical decrease.

Exercise 3.4.

(4 Points)

Finish the proof from the lecture and show that weighted congestion games with affine delay functions have a pure Nash equilibrium.

The exercise sheets and more information about the course can be found at http://algo.cs. uni-frankfurt.de/lehre/agt/winter1920/agt1920.shtml

 $Email: \verb"mhoefer@cs.uni-frankfurt.de", \verb"schmand@em.uni-frankfurt.de" \\$