Algorithmic Game Theory Winter Term 2019 / 2020

Prof. Dr. Martin Hoefer, Dr. Daniel Schmand

Exercise Sheet 1

Publication: Oct 22, 2019 Solutions Due: Oct 28, 2019

UNIVERSITÄT

FRANKFURT AM MAIN

Algorithmen und Komplexität

Institut für Informatik

JOHANN WOLFGANG

Please hand in your solutions until Tuesday, October 29, 10:15h, in H9 or the letterbox between rooms 114 and 115, R.M.S. 11-15.

Exercise 1.1.

(2+2 Points)

GOETHE

	E		F		G		H
	8	3	9		8		9
A	8	6		6		8	
)	8		5		9
В						_	
	9	1		8		1	
C	(5	6		9		8
U	7	2		6		4	
	:	3	8		5		6
D							
	9	8		6		8	

Consider the 2-player game given by the matrix above. Calculate all

- a) dominant strategies of the players,
- b) pure Nash equilibria.

Exercise 1.2.

(3+3+3 Points)

A strategy $s_i \in S_i$ of player *i* is called **strictly dominated** by strategy $s'_i \in S_i$, if s'_i is always strictly better then s_i , i.e. for all s_{-i} we have

$$c_i(s'_i, s_{-i}) < c_i(s_i, s_{-i}).$$

		W		Х		Υ		Ζ
		2		6		3		9
A	0		4		1		C	
	3		4				0	
		3		2		6		8
В								
	2		3		5		1	
		1		2		5		4
C								
	3		1		5		2	
		7		4		2		5
D								
	4		5		3		2	

- a) Iteratively, eliminate all strictly dominated strategies in the cost matrix given above. Do this until there are no strictly dominated strategies left. Write down your cost matrix after each step.
- b) Calculate a mixed Nash equilibrium in the reduced cost matrix.
- c) Prove the following statement: In all matrix games, there is a one-to-one correspondence between mixed Nash equilibria in the original and the reduced game, when applying the reduction procedure described above.

Exercise 1.3.

(2 + 2 + 2 Points)

We generalize the Sperner-lemma to squares in the following way: We consider a square S that is subdivided into smaller squares by a grid of lines parallel to the edges of the original square. The vertices of the subdivision are the points of intersection of the lines. A Sperner-coloring of S is a coloring of vertices that fulfills the following properties:

- The four corners of the outer square are colored with the colors red, blue, orange, purple in clockwise order.
- Every point on a side of S is colored with one of the two colors of the endpoints of the corresponding outer line.
- Vertices in the interior of S are colored arbitrarily in one of the four colors.

We call edges between red and blue vertices the *doors*. Doors at the boundary of S are called *entrances*. Show the following properties for a Sperner-coloring of a square S:

- a) There is an odd number of entrances.
- b) There is at least one small square with at least 3 different colors.
- c) There is an odd number of small squares, with at least 3 different colors and exactly one door.

The exercise sheets and more information about the course can be found at http://algo.cs. uni-frankfurt.de/lehre/agt/winter1920/agt1920.shtml

 $Email: \verb"mhoefer@cs.uni-frankfurt.de", \verb"schmand@em.uni-frankfurt.de" \\$