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Online Auctions

In many applications potential customers are not all simultaneously in the market,
they come and go over time. We study mechanisms to sell a single item online,
i.e., in a scenario where bidders arrive and depart sequentially one by one.

Online Single-Item Auction

I In round t = 1, 2 . . . bidder it arrives and reports a value vit for the item
I Mechanism decides immediately (without knowning future bidders
it+1, it+2, . . .) whether it gets the item or not, and his payment.

I All decisions about item allocation and payments are final and irrevocable.

Without knowledge about the number and the maximum value of the bidders
it is in the worst-case impossible to assign the item to the highest bidder. In
terms of approximation of social welfare every mechanism is extremely bad in the
worst case. Thus, worst-case analysis is not informative. Instead, we focus on two
stochastic models for analysis with slightly different assumptions on arrival times
and values of the bidders.
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Random-Order Model

Random-Order Model
I Values of bidders are unknown
I Number n of bidders is known
I Bidders arrive in uniform random order

We strive to maximize social welfare, i.e., assign the item to the highest bidder.
This is the standard secretary problem: Find the bidder with highest value in a
uniform random arrival order.

Secretary Algorithm

Let r ∈ {1, . . . , n} be the sample size

Sample: In round t = 1, . . . , r bidder it reports value vit . He is rejected.

Acceptance: In round t = r + 1, . . . , n bidder it reports value vit . If item is still
available and it highest bidder so far, assign item to it.
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Competitive Ratio

We evaluate online algorithms using the competitive ratio:
I S∗ is an optimal feasible subset of bidders that maximizes

∑
i∈S∗ vi.

I Online algorithm is c-competitive: Outputs feasible set T of bidders with

E

[∑
i∈T

vi

]
≥ 1

c
·
∑
i∈S∗

vi

c is competitive ratio of the algorithm.
I Note: T is a random subset. Randomization based on random arrival order

of bidders and (possibly) internal randomization of the algorithm.

Consider the algorithm above. For r = bn/ec the algorithm assigns the item to
the highest bidder with a probability of at least 1/e. Hence:

Proposition
The Secretary algorithm with r = bn/ec is e-competitive.
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Incentive Compatibility

A bidder shall have no incentive to lie, even if he knows
I all values of other bidders,
I the arrival order of all bidders,
I the mechanism to choose allocation and payments, and
I possible internal random bits for internal randomization of the mechanism.

Hence, the bidder shall have at the end in hindsight and for every possible outcome
of the random choices an incentive to report his value truthfully.

IC here means that the mechanism is (ex-post universally) truthful.

Consider the Secretary algorithm. Are there payments to turns it into an IC
mechanism?

The algorithm must be monotone. Also, we must assign payments directly at the
time of allocation, without knowing values of future bidders...
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An IC Single-Item Online Auction

Let τ = maxt=1,...,r vit be the best value in the sample phase. If the mechanism
assigns the item, then let it∗ be the receiving bidder. Assign payments pit∗ (v) = τ ,
and pit(v) = 0 für all t 6= t∗.

Proposition
The Secretary mechanism is incentive compatible and e-competitive for the
single-item auction in the random-order model.

Proof:
Consider the bidders in hindsight in the order they arrived.

I No bidder it with t > t∗ or t ≤ r can make the algorithm assign him the
item by unilaterally changing his reported value.

I For bidder it with t = r + 1, . . . , t∗ the mechanism assigns the item to the
earliest bidder with vit ≥ τ at price τ .

Bidder it∗ with vit∗ ≥ τ gets the item, pays τ and is happy with true bid. Every
bidder it with t = r, . . . , t∗ − 1 has vit ≤ τ , gets and pays nothing, and is happy
with true bid.
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Multiple Items

Multi-Item Markets and Unit-Demand Bidders
I Set I of n bidders
I Set J of m items
I Bidder i ∈ I has private values vij ≥ 0 for every j ∈ J .
I It is known that bidder i has unit demand, i.e., he values only the best

received item
vi(S) = max

j∈S
vij .

The allocation with maximum social welfare can be given by a max-weight
matching M∗ in the complete bipartite graph G with vertex set I ∪ J .
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Online Mechanisms for Unit-Demand Auctions

Online Mechanisms
I Bidders arrive sequentially in random order
I All items available upfront, number n of bidders known upfront
I Bidders arrive in uniform random order, report private values upon arrival
I Online mechanism decides: Which item (if any) should be assigned to the

bidder? What does he pay?
I Allocation and payment must be decided before next bidder arrives
I Every decision is final and irrevocable

Mechanism Objectives:

1. ex-post universally incentive compatible

2. approximate social welfare
∑
i∈I vi(S) as good as possible

3. polynomial-time computation
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Online VCG Mechanism for Unit-Demand Auctions

1. Init assignment M ← ∅ and payments pi(v)← 0 for all i ∈ I
2. Reject the first r bidders

3. In round t = r + 1, . . . , n do:

4. Bidder it arrives

5. It is set of all bidders arrived so far. Jt is set of unassigned items.

6. Mt ← max-weight matching in induced subgraph Gt = G ∩ (It ∪ Jt)
7. v(Mt)←

∑
(k,j)∈Mt

vkj the social welfare of Mt.

8. if it matched to j ∈ Jt in Mt then
9. Assign j to it and add (it, j) to M .

10. it gets VCG payment

pit(v) = v(M ′t)− v(Mt \ (it, j)),

where M ′t is max-weight matching in G′t = G ∩ ((It \ {it}) ∪ Jt).
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Example

M at the end of round 3:

Martin Hoefer Algorithmic Game Theory 2019/20

Secretaries and Prophets



Online Auctions Secretaries and Matching Matroid Secretary Prophet Inequalities

Example

Bidder i4 arrives and reports values for all items:
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Example

Bipartite graph G4:
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Example

Max-weight matching M4 in G4 leaves i4 unmatched:
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Example

M at the end of round 4:
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Example

Bidder i5 arrives and reports values for all items:
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Example

Bipartite graph G5:
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Example

Max-weight matching M5 in G5 matches i5 to item 1:
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Example

M at the end of round 5:
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Online VCG

Proposition
The Online VCG mechanism is incentive compatible and can be implemented in
polynomial time.

Proof:
Bidder it cannot change the set It of arrived bidders or the set Jt of remaining
unassigned items. When we determine his assignment and payments in round t,
he faces a standard VCG mechanism that assigns items in Jt to unit-demand
bidders in It in an IC fashion.

Computationally most demanding are steps 6 and 9, where we need to compute
max-weight bipartite matchings. This can be done in polynomial time with linear
programming (c.f. “Theoretische Informatik I”).

Theorem (Reiffenhäuser, 2019)
The Online VCG mechanism with r = bn/ec is e-competitive for multi-item
unit-demand auctions in the random-order model.
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Online VCG is e-competitive

All sets It and Jt are random variables.

If we fix the set It of bidders and their order of arrival over the first t rounds,
then the set Jt+1 of unassigned items at the end of round t is fully determined,
since VCG uses no randomness.

The key technical idea of the theorem is the following:

If we fix the set It of bidders but assume random arrival order of bidders in It
over the first t rounds, then the every set Jt+1 of k items has the same probability
to remain. Moreover, this probability is stochastically independent of It.

Formally, consider Pr[It, Jt+1] the probability that a given set of bidders It arrives
in the first t rounds and a set Jt+1 remains in the end of round t.

Lemma (Independence Lemma)
Consider any round t = 1, . . . , n, any two subsets It, I ′t ⊆ I with |It| = |I ′t| = t
and any two subsets Jt+1, J

′
t+1 ⊆ J with |Jt+1| = |J ′t+1|. Then

Pr[It, Jt+1] = Pr[I ′t, J
′
t+1] .
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Online VCG is e-competitive

The proof is easy for a single item with |J | = 1, in the standard secretary case
(Exercise).

For several items, the statement of the lemma can be proven via induction over
the rounds t. We omit the proof.

The independence lemma can be used to show the following:

Lemma
For any given item j ∈ J , the probability that j remains unassigned at the end
of round t is Pr[j ∈ Jt+1] = r/t.

Proof:
Suppose we fix the two sets It, Jt, and an item j ∈ Jt.
Now Mt is determined, and so is the bidder iMt(j) matched to j in Mt (if any).
Note that

Pr[j gets assigned in round t | It, Jt, j] = Pr[iMt(j) arrives in round t | It, Jt, j]

Martin Hoefer Algorithmic Game Theory 2019/20
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Online VCG is e-competitive

For any two bidders i1, i2, consider the event that i1 arrives in round t and the
subset I1t−1 = It \ {i1} arrived in the first t− 1 rounds. Similarly, the event i2

comes in round t and I2t−1 = It \ {i2} before.

Due to the independence lemma

Pr[I1t−1, Jt] = Pr[I2t−1, Jt] .

No matter which bidder of It is it, the item set Jt has the same probability to
remain. In reverse, if we assume Jt is the set of remaining items before the start
of round t, then each bidder i ∈ It has the same probability (of 1/t) to be it.
This holds, in particular, for iMt(j). Hence:

Pr[iMt(j) arrives in round t | It, Jt, j] = 1/t

Note that this is the same quantity for all sets It, Jt and items j ∈ Jt.

Martin Hoefer Algorithmic Game Theory 2019/20
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Online VCG is e-competitive

Each j ∈ Jt can be assigned in at most one round. The probability that j survives
in a given round t is always 1− 1/t. Hence, the probability that it survives from
the beginning until the end of t rounds is

Pr[j ∈ Jt+1] =
t∏

k=r+1

(
1− 1

t

)
=

r

r + 1
· r + 1

r + 2
· · · t− 1

t
=
r

t
.

Consequently, the expected number of remaining items before start of round t is

E[|Jt|] =
∑
j∈J

Pr[j ∈ Jt] =
mr

t− 1
.
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Online VCG is e-competitive

Consider edge et = (it, j) added to the matching in round t and let v(et) = vit,j
be the value. If no edge is added in round t, we assume et = ∅ and v(∅) = 0.

Clearly, et is a random variable.

Let M∗ be an offline optimum, i.e., a max-weight matching in G.

Lemma
The expected value of et is

E[v(et)] ≥ r

n(t− 1)
· v(M∗) .
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Online VCG is e-competitive

Proof:
Suppose the set of remaining items Jt has cardinality k and consider the graph
Gt. It is a uniform random size-t-subset of I.

Due to the independence lemma, Jt is a uniform random size-k-subset of J .

Hence, each edge e ∈M∗ has a probability of t
n
· k
m

to be included into Gt. This
implies

E[v(Mt) | k = |Jt|] ≥ E[v(M∗ ∩ It × Jt) | k = |Jt|]

= E[
∑

(i,j)∈M∗∩It×Jt

vij | k = |Jt|]

=
∑

(i,j)∈M∗
vij · Pr[i ∈ It, j ∈ Jt | k = |Jt|]

= v(M∗) · t
n
· k
m

.
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Online VCG is e-competitive

We saw in the previous lemma that any edge (i, j) ∈Mt is added to M in round
t if i = it, which happens with probability 1/t, even if we condition on It and Jt.
Therefore

E[v(et) | k = |Jt|] =
1

t
· E[v(Mt) | k = |Jt|] ≥ v(M∗) · 1

n
· k
m

,

and this implies

E[v(et)] =
n∑
k=0

Pr[Jt = k] · E[v(et) | k = |Jt|]

≥ v(M∗) · 1

nm
·
m∑
k=0

Pr[|Jt| = k] · k

= v(M∗) · 1

nm
· E[|Jt|] =

r

n(t− 1)
· v(M∗) .
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Online VCG is e-competitive

Finally, we prove the theorem by applying the last lemma.

Proof (Theorem):
The overall assignment M of the algorithm is composed of all edges added in
rounds t = r + 1, . . . , n. Due to linearity of expectation, we see

E[v(M)] = E

[
n∑

t=r+1

v(et)

]
=

n∑
t=r+1

E[v(et)]

≥
n∑

t=r+1

r

n(t− 1)
· v(M∗)

=
bn/ec
n
· v(M∗) ·

n∑
t=bn/ec+1

1

t− 1

≈ 1

e
· v(M∗) · (ln(n)− ln(n/e)) =

1

e
· v(M∗) · ln n

n/e

=
1

e
· v(M∗) .

The estimation in line 4 deteriorates the ratio by at most an additive term 1/n.
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Matroid Auction

Packing Bidders
I Set I of n bidders
I Bidder i ∈ I has single private value vi ≥ 0

I Every outcome S ∈ A ⊆ 2I is a subset of bidders.
I Single-parameter domain, binary amount of stuff:
xi(S) = 1 if i ∈ S and 0 otherwise.

I A yields a matroid packing problem, i.e. the pair (I, A) is a matroid
(definition of “matroid” later).

Some Examples:
I Single-Item Auction: A = {S | 1 ≥ |S|} = I ∪ {∅}
I k-Item Auction: A = {S | k ≥ |S|}
I Forest Auction: Every bidder is an edge in a known graph G. The auction

can choose an acyclic subset of edges/bidders
A = {S | S is acyclic set of edges in G}

Martin Hoefer Algorithmic Game Theory 2019/20
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Online Mechanisms for Matroid Auctions

Online Mechanisms
I I and A are known upfront
I Bidders arrive in uniform random order, report private value upon arrival
I Online mechanism decides: Accept or reject the bidder? If accepted, what

does he pay? If rejected, payment 0.
I Every bidder is decided before next bidder arrives
I Decision on accept/reject and payment is final and irrevocable

Mechanism Objectives;

1. ex-post universally incentive compatible

2. approximate social welfare
∑
i∈S vi as good as possible

3. polynomial-time computation

Martin Hoefer Algorithmic Game Theory 2019/20
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Forest Auction

We first consider online mechanisms for graphic matroids:

Graphic Matroid

I Bidders are edges of a connected graph G = (K,E)

I Outcome set A composed of all forests (acyclic sets of edges).
I Every S ∈ A with maximum cardinality is spanning tree of G
I Every spanning tree consists of k = |K| − 1 edges
I Bidder i has private value vi, we denote v(S) =

∑
i∈S vi

Kruskal greedy algorithm: Computes an optimal spanning tree with maximum
total value

Exchange property: S spanning tree, S∗ optimal spanning tree. There are pairs
of bidders (i1, i∗1), . . . , (ik, i∗k) ∈ S × S∗ such that for all 1 ≤ t ≤ k
I St = (S ∪ {i∗1, . . . , i∗t }) \ {i1, . . . , it} is spanning tree
I S∗ = Sk

I v(St) ≥ v(St−1)

Martin Hoefer Algorithmic Game Theory 2019/20
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Random Threshold Mechanism

1. pi(v)← 0 for all bidders

2. Reject the first n/2 bidders, we denote this set by Y .

3. Choose j ∈ {0, 1, 2, . . . , dlog ke} uniformly at random

4. Set threshold τ ← maxx∈Y vx/2
j , set S ← ∅

5. In round t = n/2 + 1, . . . , n do:

6. Consider arriving bidder it
7. if vit ≥ τ and (S ∪ {it}) ∈ A then
8. S ← S ∪ {it} and pit(v)← τ .

Theorem
The Random Threshold mechanism is incentive compatible and can be
implemented in polynomial time. It is O(log k)-competitive for forest auctions.

Martin Hoefer Algorithmic Game Theory 2019/20
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Random Threshold Mechanism

Proof:
IC can be shown similarly to the secretary mechanism (Exercise). Polynomial
running time is straightforward. We only show the competitive ratio.

We concentrate on bidders from S∗ with significant value.
I Let S∗ be an optimal spanning tree. We number the k bidders from S∗ by

1, . . . , k in non-increasing order of value v1 ≥ . . . ≥ vk.
I Note: v1 is the highest Bidder from I (c.f. Kruskal algorithm), but the other

are not necessarily the next k − 1 bidders with highest values from I.
I Choose q such that: (vq ≥ v1/k) ∧ ((q = k) ∨ (vq+1 < v1/k)).
I Note:

k∑
i=q+1

vi < v1, and hence
q∑
i=1

vi ≥ v(S∗)/2.

I The q highest bidders in S∗ yield at least half of the optimal social welfare.

Martin Hoefer Algorithmic Game Theory 2019/20
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Logarithmic Ratio

The analyis relies on classes of values based on bidders i = 1, . . . , k from S∗.
W.l.o.g. we assume that v1 > v2 > . . . > vk.

I There are exactly i bidders in S∗ with value at least vi.
I Let mi(T ) be the number of bidders in T ⊂ I with value at least vi/2.
I We see that

q∑
i=1

vi =

[
q−1∑
i=1

(vi − vi+1) · i

]
+ vq · q.

I For every set T

v(T ) ≥ 1

2
·

[
q−1∑
i=1

(vi − vi+1) ·mi(T )

]
+

1

2
· vq ·mq(T ).

Martin Hoefer Algorithmic Game Theory 2019/20
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Proof

Lemma
Suppose S is the outcome of Random Threshold. For every i = 1, . . . , q we have

E[mi(S)] ≥ 1

8(dlog ke+ 1)
· i.

The theorem follows from the lemma:

E[v(S)] ≥ 1

2
·

[
q−1∑
i=1

(vi − vi+1) · E[mi(S)]

]
+

1

2
· vq · E[mq(S)]

≥ 1

16(dlog ke+ 1)

[
q−1∑
i=1

(vi − vi+1) · i

]
+

1

16(dlog ke+ 1)
· vq · q

=
1

16(dlog ke+ 1)
·
q∑
i=1

vi

≥ 1

32(dlog ke+ 1)
· v(S∗)

Martin Hoefer Algorithmic Game Theory 2019/20
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Proof of Lemma

Proof (Lemma):
We show the lemma inductively for every value of i. The start with i = 1 is simple
(Exercise). Consider 1 < i ≤ q.

I Suppose a∗ is the bidder with highest value.
I We condition on an event E that two assumptions hold simultaneously:

(1) The highest bidder is in the sample a∗ ∈ Y , and
(2) for τ we choose j such that vi ≥ va∗/2j ≥ vi/2.

I We can compute S∗ with the Kruskal algorithm. Hence, v1 = va∗ and
vq ≥ v1/k ≥ va∗/2dlog ke. This implies there is a suitable j to fulfill
assumption (2) in every case 1 < i ≤ q.

I The algorithm picks the suitable j with prob. 1/(dlog ke+ 1).
I Overall, the prob. of event E is Pr[E] = 1/(2(dlog ke+ 1)).

Martin Hoefer Algorithmic Game Theory 2019/20
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Proof of Lemma

Let us bound the competitive ratio conditioned on event E.

I The highest i bidders from S∗ are a cycle-free set S′ = {1, . . . , i}. With
assumption (2) all values v1 ≥ . . . ≥ vi ≥ τ = va∗/2

j .
I With assumption (1) we know a∗ = 1 in Y . Hence, in expectation at least

(i− 1)/2 ≥ i/4 bidders of S′ are not in Y and can be chosen by our
algorithm. This implies E[|S′ \ Y | | E] ≥ i/4.

I In this case, because of the exchange property, the algorithm will pick at
least S′ \ Y many bidders. The expected size of the output S conditioned
on event E is

E[|S| | E] ≥ E[|S′ \ Y | | E] ≥ i/4.

I Since τ ≥ vi/2 and every chosen bidder has a value at least τ :

E[mi(S) | E] = E[|S| | E] ≥ i/4.

Finally, the conditioning on event E can be removed by multiplying with Pr[E].

Martin Hoefer Algorithmic Game Theory 2019/20
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Matroids – Definition

Algorithm and analysis can be applied directly to arbitrary matroid auctions.

Definition (Matroid)
A tuple M = (I, A) is a matroid if I = {1, . . . , n} is a finite set of bidders and
A a non-empty family of subsets of I such that:
I If S ∈ A and T ⊆ S, then T ∈ A as well, and
I if S, T ∈ A and |T | < |S|, then there is an s ∈ S\T mit T ∪ {s} ∈ A.

Notation
I A set S ∈ A is called independent.
I A maximal independent set B ∈ A is called basis.
I The cardinality of every basis is the same and is called rank rk(M) of the

matroid. Notation: k = rk(M).

Martin Hoefer Algorithmic Game Theory 2019/20
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Matroids – Weights and Exchange Property

Definition (Weighted Matroid)

I A matroid with weights vi ∈ R for every i ∈ I is called weighted.
I The weight of an independent set S is v(S) =

∑
i∈S vi.

I An optimal basis is a basis with maximal weight.

Kruskal greedy algorithm: Computes an optimal basis with maximum total weight

Exchange property:B basis,B∗ optimal basis. There are pairs (b1, b∗1), . . . , (bk, b∗k) ∈
B ×B∗ such that for all 1 ≤ t ≤ k
I Bt = (B ∪ {b∗1, . . . , b∗t }) \ {b1, . . . , bt} is basis
I B∗ = Bk

I v(Bt) ≥ v(Bt−1)

Martin Hoefer Algorithmic Game Theory 2019/20
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Is there a constant-competitive algorithm?

Membership oracle for matroid (I, A):
Given any set S ⊆ I decides whether S ∈ A or not.

Theorem (Babaioff, Immorlica, Kleinberg 2007)
The Random-Threshold mechanism
I is incentive compatible,
I runs in polynomial time with a poly-time membership oracle,
I is O(log k)-competitive for arbitrary matroid auctions.

Is this a good result? Can we obtain constant-competitive algorithms? Can they
be augmented by payments to yield IC mechanisms?
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Is there a constant-competitive algorithm?

Matroid Secretary Conjecture
For every matroid there is an algorithm in the random-order model that is ...

Weak: ... constant-competitive

Strong: ... e-competitive

Over the last decade, the conjecture was proven for many subclasses of matroids.
In general, however, the conjecture remains open. The current best algorithms
are due to Lachish (2014) as well as Feldman, Svensson, Zenklusen (2018). They
obtain a competitive ratio of O(log log k), but they do not necessarily extend to
incentive-compatible mechanisms.

For graphic matroids we prove the weak conjecture.
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Constant-Competitive Mechanism for Forest Auctions

Parallel Secretaries

1. Fix an arbitrary order k1, k2, k3, . . . of vertices of the graph

2. Choose X ∈ {0, 1} uniformly at random

3. if X = 1 then orient every edge e ∈ E to vertex with lower index

4. else orient every edge to vertex with higher index

5. For every vertex ki in parallel:
Execute Secretary algorithm on the incoming edges and choose at most one
incoming edge of ki. Assign payments as in the Secretary mechanism for
single-item auctions.

Theorem (Korula, Pal 2009)
The Parallel Secretaries mechanism is incentive compatible and can be
implemented in polynomial time. It is 2e-competitive for forest auctions.
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Proof

Proof:
Incentive compatibility can be shown similarly as for the Secretary mechanism
(Exercise). Polynomial running time is straightforward. We only show the compe-
titive ratio.

I Depending on the orientation of edges, the (direct or inverse) order of
vertices becomes a topological order, i.e., G becomes a directed acyclic
graph. Even if every vertex adds an arbitrary incoming edge to S, then S
stays cycle-free.

I We only have to bound E[v(S)].
I Suppose GX is the directed graph for X ∈ {0, 1}.
I Suppose hX(ki) is an incoming edge of ki in GX with highest value
I Suppose SX = {hX(ki) | ki ∈ K}, and S∗ is an optimal forest in G.

Proposition

v(S∗) ≤
∑
ki∈K

vh0(ki) + vh1(ki) = v(S0) + v(S1) .

Martin Hoefer Algorithmic Game Theory 2019/20

Secretaries and Prophets



Online Auctions Secretaries and Matching Matroid Secretary Prophet Inequalities

Proof

Conditioned on the choice of X the algorithm obtains for every vertex ki in
expectation at least a 1/e-fraction of the highest value of any incoming edge of
ki. Thus, we obtain for x = 0 as well as x = 1

E[v(S) | X = x] ≥ 1/e · v(Sx) .

Using the proposition we see

E[v(S)] = 1

2
· (E[v(S) | X = 0] + E[v(S) | X = 1])

≥ 1

2e
· (v(S0) + v(S1))

≥ 1

2e
· v(S∗) .
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Online Auctions
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Bidders with Distributions

Here we draw the private value vi for every bidder i independently from a known
distribution Vi with non-negative values and finite expectation.

Distribution Model
I Values of bidders and arrival order are unknown
I Number n of bidders is known
I Value vi drawn independently from known distribution Vi for bidder i

We first study the single-item auction and strive to maximize social welfare.
Afterwards we also consider revenue maximization.

Prophet

1. pi(v)← 0 for all bidders i ∈ I
2. τ ← Exj∼Vj [maxj xj ]/2 = E[vmax]/2

3. In round t = 1, 2, . . . , n:

4. if vit ≥ τ and item unassigned then
5. Assign item to bidder it and set pit(v)← τ .
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2-Approximation to the Prophet

Theorem (Krengel, Sucheston 1978)
The Prophet mechanism is incentive compatible and can be implemented in
polynomial time. It is 2-competitive for the single-item auction in the distribution
model.

Proof:
IC follows similarly as for the Secretary mechanism (Exercise). Polynomial running
time is straightforward. We prove the competitive ratio.

The algorithm assigns the item in the first round t∗ in which a bidder with value
vit∗ ≥ τ arrives. If no such bidder exists, then the item is never assigned and we
define vit∗ = 0.
We will see that the expected value of our algorithm is E[vit∗ ] ≥ τ . Since all
values are drawn from distributions, the optimum vmax is also a random variable.
Hence, to bound the competitive ratio we will show:

E[vit∗ ] ≥ τ =
1

2
· Exj∼Vj [max

j
xj ] =

1

2
· E[vmax].
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Analysis

I Let q(x) = Pr[vmax ≥ x] the prob. that at least one bidder has value at
least x.

I If no bidder has value at least τ , then the item is never assigned. This
happens with prob. (1− q(τ)).

I Hence, for every bidder it: With prob. at least (1− q(τ)) the item is still
available in round t.

I With prob. qt(x) = Pr[vit > x] bidder it has value vit > x ≥ τ . Then the
algorithm assigns the item to it.

I Consider the event Et(x) that (1) the algorithm assigns the item to it and
(2) his value vit > x. It holds

Pr[Et(x)] ≥ (1− q(τ)) · qt(x)

.

Martin Hoefer Algorithmic Game Theory 2019/20

Secretaries and Prophets



Online Auctions Secretaries and Matching Matroid Secretary Prophet Inequalities

Analysis

I For every x ≥ τ the item can be assigned to at most one bidder with value
at least x. Thus, at most one of the events Et(x) can occur. This implies:

Pr[vit∗ > x] =

n∑
t=1

Pr[Et(x)] ≥ (1− q(τ)) ·
n∑
t=1

qt(x) .

I Several bidders can simultaneously have a value of at least x. Hence, for the
prob. that at least one bidder has value at least x we see: (Union Bound)

Pr[vmax > x] ≤
n∑
i=1

qi(x) .

Thus, for x ≥ τ there is a relation between the choice of our algorithm and
the optimum:

Pr[vit∗ > x] ≥ (1− q(τ)) · Pr[vmax > x] .
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Analysis

I For the expectation we use the integral definition for distributions over
non-negative values:

E[vit∗ ] =
∫ ∞
x=0

Pr[vit∗ > x] dx

= q(τ) · τ +

∫ ∞
x=τ

Pr[vit∗ > x] dx

≥ q(τ) · τ + (1− q(τ))
∫ ∞
x=τ

Pr[vmax > x] dx

= q(τ) · τ + (1− q(τ))
(
E[vmax]−

∫ τ

x=0

Pr[vmax > x] dx

)
≥ q(τ) · τ + (1− q(τ)) (E[vmax]− τ)

I The natural trade-off becomes obvious: For larger τ , we have higher value
when assigning the item, but we have less probability q(τ) that there is
anyone with value at least τ for the item.

I For τ = E[vmax]/2 the q(τ)-terms cancel, and we obtain
E[vit∗ ] ≥ 1/2 · E[vmax] as desired.

Martin Hoefer Algorithmic Game Theory 2019/20

Secretaries and Prophets



Online Auctions Secretaries and Matching Matroid Secretary Prophet Inequalities

Prophets

The inequality

E[vit∗ ] ≥ 1

2
· E[vmax]

is called prophet inequality, because it bounds the value in comparison to a
prophet who knows all values in advance and picks the best bidder.

If we apply the algorithm with virtual values instead of original values, we obtain a
prophet inequality for the expected virtual welfare. This yields a 2-approximation
to the expected revenue of the optimal incentive-compatible (offline) auction.
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Revenue Maximization

Revenue Prophet

1. pi(v)← 0 for all bidders i ∈ I
2. We use the shorthand (x)+ = max(0, x)

3. τ ← 1
2
· Ev∼V [maxi(ϕi(vi))

+]

4. In round t = 1, 2, . . . , n:

5. if ϕit(vit) ≥ τ and item unassigned then
6. Assign item to bidder it and set pit(v)← ϕ−1

it
(τ).

Theorem
The Revenue Prophet mechanism is incentive compatible for regular distributions
and can be implemented in polynomial time. It is 2-competitive w.r.t. the
optimal single-item auction.

Proof:
IC follows as above, since for regular distributions ϕt(vt) is monotone in vi. The
analysis of the ratio above can be transfered with minor changes to virtual values
and virtual welfare.
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Revenue Maximization

This implies

E[ϕit∗ (vit∗ )] ≥ 1

2
· E[max

i
(ϕi(vi))

+] .

Note: E[maxi(ϕi(vi))
+] is the virtual value obtained if the item is always given

to the bidder with highest non-negative virtual value. This is the virtual value
of the optimal (offline) auction. Expected payments are expected virtual value,
and thus

E
[
pi∗t (v)

]
≥ 1

2
· E

[∑
i

p∗i (v)

]
,

where p∗i are the payments of the optimal (offline) auction.

For revenue maximization in the offline case this represents a simple IC mecha-
nism: Compute τ and offer the item sequentially to bidders in arbitrary order at
a fixed price of τ , until a bidder decides to buy. In this way, we obtain at least
half of the expected revenue of every other IC mechanism.
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Matroid Auctions

We can extend the scenario to matroid auctions in the natural way::
I Known: Set I of bidders, set A of outcomes, matroid M = (I, A)

I Bidder i ∈ I has unknown private value vi ∼ Vi, distribution Vi known
I Bidders arrive in unknown order. Online mechanism decides directly:

accept/reject and payments. Decisions are final
I Goal: Construct an independent set S ∈ A with highest total value.

Mechanism shall be IC.

Here we analyze only a class of mechanism that – instead of a global threshold
τ – set a deterministic threshols τi for every bidder i ∈ I. We define τi =∞ if
S ∪ {i} 6∈ A. The algorithm accepts a bidder if and only if vi ≥ τi. In this case
bidder i pays τi.

For such an approach we need to make careful choices for the τi. In particular, we
want the thresholds to (1) avoid accepting too many bidders with small value and
(2) avoid rejecting too many bidders with high value. The notion of α-balanced
thresholds formalizes these conditions.
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α-balanced Thresholds

I For every bidder i ∈ I, let vi be the private value and v′i an arbitrary
sampled value. Both are drawn independently from Vi.

I The arrival sequence is σ = (a1, va1), . . . , (an, van). In the following
definition of thresholds we fix the arrival sequence (and, hence, all vi’s) and
postulate a condition for every such sequence.

I Let S = S(σ) be the chosen set of bidders.

I Optimal basis for sampled values v′ is B′.

I By the exchange property there is at least one partition of B′ in Bc and Br
such that S ∪Br is a basis of M .

I From all such partitions, let (Bc(S), Br(S)) be the one that maximizes the
sampled welfare v′(Br(S)).
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Definition

Definition
For any α > 0, a mechanism has α-balanced thresholds if for every sequence σ
and every X disjoint from S = S(σ) with S ∪X ∈ A it holds that the
deterministic thresholds τi = τi(σ) satisfy∑

i∈S

τi ≥
(
1

α

)
· Ev′∼V [v′(Bc(S))] (1)

∑
i∈X

τi ≤
(
1− 1

α

)
· Ev′∼V [v′(Br(S))] . (2)

Proposition
If a mechanism has α-balanced thresholds, then it is incentive compatible and
α-competitive for matroid auctions.
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Mechanism for the Matroid Auction

Expected-Margin-Thresholds

1. pi(v)← 0 for all i ∈ I, S ← ∅
2. In round t = 1, 2, . . . n:

3. if (S ∪ {it}) 6∈ A then τt ←∞; else

τt ←
1

2
· Ev′∼V [v′(Br(S))− v′(Br(S ∪ {it}))] ,

where all v′i ∼ Vi drawn independently.

4. if vit ≥ τt then S ← S ∪ {it} and pit(v)← τt

Theorem (Kleinberg, Weinberg 2019)
Expected-Margin-Thresholds has 2-balanced thresholds, is incentive compatible
and 2-competitive for matroid auctions.
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Discussion

I The distribution model seems to have “nicer” properties than the
random-order model, e.g., a better ratio for the single-item auction (2 vs. e).

I For matroid auctions the improvement is substantial (2 vs. o(1)). A final
evaluation, however, depends on the resolution of the matroid secretary
conjecture.

I In recent years, algorithms in the random-order and the distribution model
have been proposed for a number of additional online packing problems.

I There exist approaches for online variants of knapsack, matching,
independent set, packing integer programs and further problems.

I The properties of algorithms for stochastic online optimization are generally
only poorly understood and a topical area of research in theoretical
computer science and beyond.
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