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Prisoner’s Dilemma

S C
2 1

S
2 5

5 4
C

1 4

▶ Two criminals interrogated separately.
▶ Strategies: (C)onfess, remain (S)ilent
▶ Confessing yields a smaller verdict if the

other one is silent
▶ If both confess, the verdict is larger for

both (4 years) compared to when they
both remain silent (2 years).
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Prisoner’s Dilemma

S C
2 1

S
2 5

5 4
C

1 4

▶ If both players remain (S)ilent, the total
cost is smallest.

▶ If both players (C)onfess, the cost is larger
for both of them.

▶ Still, for each player confessing is always
the preference!
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Normal Form Games

Definition
A normal form game is a triple (N , (Si)i∈N , (ci)i∈N ) where
▶ N is the set of players, n = |N |,
▶ Si is the set of (pure) strategies of player i,
▶ S = S1 × . . .× Sn is the set of states,
▶ a state is s = (s1, . . . , sn) ∈ S,
▶ ci : S → R is the cost function of player i ∈ N . In state s player i has a

cost of ci(s).

We denote by s−i = (s1, ..., si−1, si+1, ..., sn) a state s without the strategy si.
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Dominant Strategies

Definition
A pure strategy si is called a dominant strategy for player i ∈ N if
ci(si, s−i) ≤ ci(s

′
i, s−i) for every s′i ∈ Si and every s−i.

Definition
A state s = (s1, . . . , sn) is called a dominant strategy equilibrium if for every
player 1 ≤ i ≤ n strategy si ∈ Si is a dominant strategy.

Does every game have a dominant strategy equilibrium? No!
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Pareto Optimum

Definition
A state s Pareto-dominates another state s′ (or: s is a Pareto improvement
over s′) if ci(s) ≤ ci(s

′) for every player i ∈ N and cj(s) < cj(s
′) for at least

one player j ∈ N .

Definition
A state s is called a Pareto optimum or Pareto efficient if there is no state that
Pareto dominates s.

In a Pareto optimum a player might be able to strictly decrease its cost by
deviating – however, no player can strictly decrease its cost without strictly
increasing the cost of another player.

Does every game have a Pareto optimum? Yes!
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Battle of the Sexes

(Z)eil (E)intracht
1 6

(Z)eil
2 6

5 2
(E)intracht

5 1

▶ In state (Z,Z) the preference
for both is (Z)eil.

▶ In state (E,E) the preference
for both is (E)intracht.

⇒ No global preference.

What is a plausible outcome in this situation?
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Pure Nash Equilibrium

Definition
A strategy si is called a best response against a collection of strategies s−i if
ci(si, s−i) ≤ ci(s

′
i, s−i) for all s′i ∈ Si.

Note: si dominant strategy ⇔ si best response for all s−i.

Definition
A state s = (s1, . . . , sn) is called a pure Nash equilibrium if si is a best
response against the other strategies s−i for every player 1 ≤ i ≤ n.

A Nash equilibrium
▶ ... is a collection of local preferences in the game.
▶ ... is stable against unilateral deviation.

Does every game have a pure Nash equilibrium? No!
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Rock-Paper-Scissors

R P S
0 -1 1

R
0 1 -1

1 0 -1
P

-1 0 1
-1 1 0

S
1 -1 0
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Rock-Paper-Scissors

R P S
0 -1 1

R ↓→ ↓ ←
0 1 -1

1 0 -1
P → ↓→ ↑

-1 0 1
-1 1 0

S ↑ ← ←↑
1 -1 0
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Mixed Strategies

Definition
A mixed strategy xi for player i is a probability distribution over the set of pure
strategies Si.

For finite games xi is such that xij ∈ [0, 1] and
∑

j∈Si
xij = 1.

The cost of a mixed state for player i is

ci(x) =
∑
s∈S

p(s) · ci(s) ,

where
p(s) =

∏
i∈N ,j=si

xij

is the probability that the outcome is pure state s.
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Mixed Nash Equilibrium

Definition
A (mixed) best response strategy xi against a collection of mixed strategies
x−i is such that c(xi, x−i) ≤ ci(x

′
i, x−i) for all other mixed strategies x′

i.

Definition
A mixed state x is called a (mixed) Nash equilibrium if xi is a best response
strategy against x−i for every player 1 ≤ i ≤ n.

Note:
▶ Every pure strategy is also a mixed strategy.
▶ Every pure Nash equilibrium is also a mixed Nash equilibrium.
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Example

0.3 0.7
2 3 0.3 · 1 + 0.7 · 2

0.2 = 0.3 + 1.4
1 2 = 1.7

4 2 0.3 · 1 + 0.7 · 5
0.8 = 0.3 + 3.5

1 5 = 3.8

0.2 · 2 + 0.8 · 4 0.2 · 3 + 0.8 · 2
= 0.4 + 3.2 = 0.6 + 1.6

= 3.6 = 2.2

▶ c1(x) = 1.7 · 0.2 + 3.8 · 0.8 > 1.7 – best response is (1, 0)

▶ c2(x) = 3.6 · 0.3 + 2.2 · 0.7 > 2.2 – best response is (0, 1)

▶ State x with x1 = (0.2, 0.8) and x2 = (0.3, 0.7) is no mixed Nash
equilibrium.
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Observation

In the previous example x is not a mixed Nash equilibrium, because players play
suboptimal pure strategies with positive probability.

Fact
If a mixed best response xi against x−i has xij > 0, then j is a pure best
response against x−i.

The cost of xi is a “weighted average” of the cost of the pure strategies. It is
minimal if and only if the averaging is just over pure strategies with minimum
cost.
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Example

1 0
2 3 1 · 1 + 0 · 2

1 = 1
1 2

4 2 1 · 1 + 0 · 5
0 = 1

1 5

1 · 2 + 0 · 4 1 · 3 + 0 · 2
= 2 = 3

▶ State x with x1 = (1, 0) and x2 = (1, 0) is a pure (and hence also a
mixed) Nash equilibrium.
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Example

1 0
2 3 1 · 1 + 0 · 2

2
3

= 1
1 2

4 2 1 · 1 + 0 · 5
1
3

= 1
1 5

2
3
· 2 + 1

3
· 4 2

3
· 3 + 1

3
· 2

= 8
3

= 8
3

▶ State x with x1 = ( 2
3
, 1
3
) and x2 = (1, 0) is a mixed Nash equilibrium.

▶ For the row player the upper strategy is a dominant strategy, but in the
first column it is not strictly better. If it was strictly better in every
column, the lower strategy would not be played in any mixed Nash
equilibrium. (Why?)
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Nash Theorem

Theorem (Nash Theorem)
Every finite normal form game has a mixed Nash equilibrium.

We will use Brouwer’s fixed point theorem to prove it.

Theorem (Brouwer Fixed Point Theorem)
Every continuous function f : D → D mapping a compact and convex
nonempty subset D ⊆ Rm to itself has a fixed point x∗ ∈ D with f(x∗) = x∗.
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Brouwer’s Theorem: Prerequisites and Definitions

▶ A set D ⊂ Rm is convex if for any x, y ∈ D and any λ ∈ [0, 1] we have
λx+ (1− λ)y ∈ D.

▶ A subset D ⊂ Rm is compact if and only if it is closed and bounded.

▶ A set D ⊆ Rm is bounded if and only if there is some integer M ≥ 0 such
that D ⊆ [−M,M ]m.

▶ Consider a set D ⊆ Rm and a sequence x0, x1, . . ., where for all i ≥ 0,
xi ∈ D and there is x ∈ Rm such that x = limi→∞ xi (i.e., for all ϵ > 0
there is integer k > 0 such that ||x− xj ||2 < ϵ for all j > k). A set D is
closed if x ∈ D for every such sequence.

▶ A function f : D → Rm is continuous at a point x ∈ D if for all ϵ > 0,
there exists δ > 0, such that for all y ∈ D: If ||x− y||2 < δ then
||f(x)− f(y)||2 < ϵ. f is called continuous if it is continuous at every
point x ∈ D.
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Brouwer’s Theorem: Prerequisites and Examples

▶ Convex/Non-convex:

x
y x

y

▶ Closed and bounded:
[0, 1]2 is closed and bounded.
[0, 1) is not closed but bounded.
[0,∞) is closed and unbounded.

▶ Continuous: Clear.
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Brouwer’s Theorem: Example

Every continuous f : [0, 1]→ [0, 1] has a fixed point:

1

1

0
0

For f : [0, 1]2 → [0, 1]2: Crumpled Sheet Experiment
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Nash Theorem

Theorem (Nash Theorem)
Every finite normal form game has a mixed Nash equilibrium.

Proof:

First check the conditions of Brouwer’s Theorem.

Fact
The set X of mixed states x = (x1, . . . , xn) of a finite normal form game is a
convex compact subset of Rm with m =

∑n
i=1 mi with mi = |Si|.

We will define a function f : X → X that transforms a state into another state.
The fixed points of f are shown to be the mixed Nash equilibria of the game.
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Properties of Nash Equilibria

Recall:
▶ A mixed Nash equilibrium x is a collection of mixed best responses xi.

▶ If a best response xi against x−i has xij > 0, then j ∈ Si is pure best
response against x−i.

▶ A collection of best responses (i.e. a mixed Nash equilibrium)
x = (x1, ..., xn) has

ci(x)− ci(j, x−i) ≤ 0 for all j ∈ Si and all i ∈ N
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Proof of Nash’s Theorem: Definition

▶ For mixed state x let

ϕij(x) = max{0, ci(x)− ci(j, x−i)} .

▶ Define f : X → X with f(x) = x′ = (x′
1, ..., x

′
n) by

x′
ij =

xij + ϕij(x)

1 +
∑mi

k=1 ϕik(x)

for all i = 1, . . . , n and j = 1, ...,mi.

Fact
f satisfies the prerequisites of Brouwer’s Theorem: f is continuous and if
x ∈ X, then f(x) = x′ ∈ X is a mixed state.

(Check as an exercise.)
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Example

▶ Player i has 3 pure strategies
▶ Current mixed strategy xi = (0.2, 0.5, 0.3)

▶ Current costs for strategies ci(·, x−i) = (2.2, 4.2, 2.2)

▶ Current cost c(xi, x−i) = 3.2

▶ Under these conditions strategy xi is mapped to x′
i as follows:

xij ci(j, x−i) ϕij(x) x′
ij

0.2 2.2 1 0.2+1
1+2

= 0.4

0.5 4.2 0 0.5+0
1+2

≈ 0.166

0.3 2.2 1 0.3+1
1+2

≈ 0.434
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Fixed Points

Brouwers Theorem tells us that there is x∗ with f(x∗) = x∗. We need to show
two directions:

f(x) = x ⇔ x is mixed Nash equilibrium.

Easy: x is mixed Nash ⇒ f(x) = x: All ϕij(x) = 0.

To show: x∗ = f(x∗) ⇒ x∗ is a mixed Nash equilibrium.
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Fixed Points as Nash Equilibria

For each i = 1, . . . , n and j = 1, . . . ,mi we have

x∗
ij =

x∗
ij + ϕij(x

∗)

1 +
∑mi

k=1 ϕik(x∗)
,

so

x∗
ij ·

(
1 +

mi∑
k=1

ϕik(x
∗)

)
= x∗

ij + ϕij(x
∗) ,

and

x∗
ij

mi∑
k=1

ϕik(x
∗) = ϕij(x

∗) .

We will show that
∑mi

k=1 ϕik(x
∗) = 0. This means that x∗

i chooses only pure
best responses and implies that it is a mixed best response.
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Fixed Points as Nash Equilibria

Claim
For every mixed state x and every player i ∈ N , there is some pure strategy
j ∈ Si such that xij > 0 and ϕij(x) = 0.

Proof of Claim:
Note that ci(x) =

∑mi
j=1 xij · ci(j, x−i), so there must be some j with xij > 0

and cost no less than this “weighted average”.

More formally, there is j with xij > 0 and

ci(x)− ci(j, x−i) ≤ 0 .

Therefore, ϕij(x) = max{0, ci(x)− ci(j, x−i)} = 0.

Martin Hoefer Algorithmic Game Theory 2019/20
Strategic Games and Nash Equilibrium



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Normal Form Games PPAD Zero-Sum Games Appendix: LP Duality

Fixed Points as Nash Equilibria

For every player i we consider strategy j from the claim. This implies x∗
ij > 0

and
x∗
ij ·

mi∑
k=1

ϕik(x
∗) = ϕij(x

∗) = 0 .

Since x∗
ij > 0 it must hold that

mi∑
k=1

ϕik(x
∗) = 0 ,

so ϕik(x
∗) = 0 for all k = 1, . . . ,mi. Therefore

ci(x
∗) ≤ ci(j, x

∗
−i) for all j ∈ Si.

Hence, x∗
i is a best response. This proves Nash’s Theorem.
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Computing Nash Equilibria

How can we compute a mixed Nash equilibrium?
What is the complexity of computing a Nash equilibrium?

This problem is different from problems we usually encounter:
▶ No optimization, trivial as decision problem (existence guaranteed)
▶ Search problem, find Nash equilibrium.
▶ Different Complexity Class: PPAD

(polynomial parity argument, directed case)
▶ A notion of completeness, similar to NP:

Define PPAD-complete problem, construct polynomial-time reductions

There are 3-player games with rational payoff, in which all mixed Nash
equilibria have irrational probability values. Thus, we can only hope to obtain
approximations to mixed Nash equilibria or Brouwer fixed points.

Martin Hoefer Algorithmic Game Theory 2019/20
Strategic Games and Nash Equilibrium



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Normal Form Games PPAD Zero-Sum Games Appendix: LP Duality

A PPAD-Complete Problem

x1

x2

. . .

xk

S

y1

y2

. . .

yk

y′
1

y′
2

. . .

y′
k

P

x′
1

x′
2

. . .

x′
k

An instance of the END-OF-LINE search problem is given by
▶ Two circuits S and P , same number of inputs and output bits
▶ S and P define a directed graph:

Vertices: k-bit vectors
Edges: There is a directed edge (x, y) if S(x) = y and P (y) = x

▶ S and P are such that the all-0-vector has one outgoing edge and no
incoming edge!

Problem: Find a different source or sink in the graph.
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END-OF-LINE

0 S(0)

S(S(0))

≡ possible solution

Observations:
▶ Every vertex in the graph has indegree and outdegree at most 1.
▶ By parity argument END-OF-LINE always admits a solution.
▶ Not necessarily the end of the line from 0, finding this specific sink is

PSPACE-complete.
▶ Only circuits are the input! The graph is exponentially large in the input

size. It cannot be fully enumerated in polynomial time.

Computing a solution to END-OF-LINE is PPAD-complete.
It is believed that there is no efficient algorithm for this problem.
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Finding (Approximate) Brouwer Fixed Points

Lemma
Finding an (approximate) mixed Nash equilibrium is in PPAD.

Proof Sketch:
▶ Reduction: Finding fixed points with END-OF-LINE
▶ Subdivide the space into finite number of smaller areas
▶ Find an area close to a fixed point (Approximation)
▶ By continuity: Finer granularity yields more precise approximation.

Divide the space into simplices (“multidimensional triangles”) and color vertices
according to direction of Brouwer function

For simplicity of presentation we here consider only problems with D ⊆ R2,
e.g., f : [0, 1]2 → [0, 1]2.
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Triangles

For simplicity we transform representation of [0, 1]2 to a triangle T . Equivalent
fixed point problem with f ′ : T → T .

D
T
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Subdivision and Coloring

▶ The trianlge space T is
subdivided into smaller
triangles

▶ For each vertex consider
the direction, in which f ′

maps the point
▶ Depending on the direction

the vertex receives a color.

With increasing granularity
trichromatic triangles
become the fixed points of
f ′.
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Subdivision and Coloring
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Subdivision and Coloring
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Subdivision and Coloring

▶ The trianlge space T is
subdivided into smaller
triangles

▶ For each vertex consider
the direction, in which f ′

maps the point
▶ Depending on the direction

the vertex receives a color.
▶ With increasing granularity

trichromatic triangles
become the fixed points of
f ′.
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Sperner Coloring

Definition
A subdivided triangle is a division of a triangle into smaller triangles.

Definition
A Sperner coloring of the vertices of a subdivided triangle satisfies:
▶ Each extremal vertex gets a different color.
▶ A vertex on a side of the largest triangle gets a color of one of the

corresponding endpoints.
▶ Other vertices are colored arbitrarily.

Verify that our coloring based on directions of f ′ yields a Sperner coloring.
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Sperner’s Lemma

Lemma (Sperner’s Lemma)
Every Sperner coloring of a subdivided triangle contains a trichromatic triangle.

Proof:
▶ Connect all vertices on the outer blue/red edge to the blue vertex. Start at

the outside face and move over lines connecting a red and a blue vertex.
There are at most 2 such lines in each triangle, never visit a triangle twice.

▶ This implies an instance of END-OF-LINE:
Vertices: Small triangles
Edges: There is an edge if two triangles share a line between a red and
blue vertex.

▶ By construction indegree and outdegree at most 1
▶ There is a starting point by creation, other sources/sinks are the

trichromatic triangles.
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Proof by END-OF-LINE
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Implications and Results

Sperner’s Lemma is a discretized version of Brouwer’s fixed point theorem. The
proof of the lemma...
▶ shows that Sperner colorings create an instance of END-OF-LINE.
▶ can be generalized to more dimensions and simplicies instead of triangles.

Then trichromatic triangles correspond to simplicies with maximum
number of colors.

▶ with “infinite granularity” implies maximally colored simplicies are Brouwer
fixed points.

This proves that finding a Brouwer fixed point and, hence, a mixed Nash
equilibrium in a finite game is in PPAD.

Fundamental result in the literature by Daskalakis/Papadimitriou and
Chen/Deng/Teng:

Theorem
Finding a mixed Nash equilibrium in a finite 2-player game is PPAD-complete.
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Definition

For consistency with literature we here consider utility functions instead of cost.

Definition
The utility of player i in a state s of a normal form game is ui(s) = −ci(s).

Definition
A zero-sum game is a strategic game, in which for every state s we have∑

i∈N ui(s) = 0.

In a zero-sum game every utility gain of one player results in a utility loss of
another player. For instance, this can be used to model situations in which
players must divide a common good.
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2-player Zero Sum Games

Two players, player I (row player), player II (column player)

Representation as a matrix A ∈ Rk×ℓ with k = |SI| rows and ℓ = |SII|
columns:



a11 a12 . . . a1ℓ

a21 a22 . . . a2ℓ

. . . .

. . . .

. . . .

ak1 ak2 . . . akℓ


aij is utility for player I
−aij is utility for player II
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Examples

Matching Pennies

(
1 −1
−1 1

)
Rock-Paper-Scissors

 0 −1 1
1 0 −1
−1 1 0


A game with k ̸= ℓ:

(
0 2 4
1 2 3

)
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Utility by Matrix Multiplication

We denote mixed strategies by x for I and y for II.

Computing the utility uI(x, y):

0.1 0.4 0.5
0.8 0 2 4 −→ 0.8 · (0.1 · 0 + 0.4 · 2 + 0.5 · 4)
0.2 1 2 3 + 0.2 · (0.1 · 1 + 0.4 · 2 + 0.5 · 3)

= 2.48

uI(x, y) = −uII(x, y) =

k∑
i=1

ℓ∑
j=1

xiaijyj

=
(

x1 x2

)
·
(

a11 a12 a13

a21 a22 a23

)
·

 y1
y2
y3


= xTAy

Martin Hoefer Algorithmic Game Theory 2019/20
Strategic Games and Nash Equilibrium



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Normal Form Games PPAD Zero-Sum Games Appendix: LP Duality

Public Strategy Choices

Suppose player I has to decide first. He must pick a public strategy before
player II makes his choice. How should I choose his public strategy?

(
0 2 4
1 2 3

)
Player II will hurt player I as much as possible.

In this game II will always answer with column 1. Hence, optimal choice for I
is pure strategy 2 or x = (0, 1)T .
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Maximin Strategies

Player I picks x, then player II best responds with y. II solves the problem
maxy uII(x, y) = maxy −xTAy = miny x

TAy.

Hence, player I searches for x that maximizes miny x
TAy.

Definition
The gain-floor of a 2-player zero-sum game is

v∗I = max
x

min
y

xTAy .

A strategy x∗ that yields the gain-floor is an optimal strategy for I, called
maximin strategy.
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Example Maximin

(
5 1 2
1 4 3

)
Player II will hurt player I as much as possible.

▶ I picks row 1 ⇒ II picks column 2 ⇒ I gets utility 1
▶ I picks row 2 ⇒ II picks column 1 ⇒ I gets utility 1

▶ I picks x = (0.5, 0.5), minimum loss for II is 2.5 in columns 2 and 3
⇒ I gets utility 2.5!

What is x∗, how large can v∗I be?
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Dual Perspective: Minimax

Now suppose player II first picks y, then player I picks x optimally with
maxx uI(x, y) = maxx x

TAy.

Hence, II searches for y that minimizes maxx x
TAy.

Definition
The loss-ceiling of a 2-player zero-sum game is

v∗II = min
y

max
x

xTAy .

A strategy y∗ that yields the loss-ceiling is an optimal strategy for II, called
minimax strategy.

What is y∗, how small can v∗II be?

How do v∗I and v∗II compare?
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Minimax Theorem

Intuitively, if both players play optimally, player I should gain at least v∗I , player
II should not lose more than v∗II. It is easy to show that

Lemma
It holds that v∗I ≤ v∗II.

Perhaps surprisingly, von Neumann and Morgenstern proved

Theorem (Minimax Theorem)
In every 2-player zero-sum game it holds that v = v∗I = v∗II. The value v is
called the value of the game.
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Minimax Theorem by Linear Programming Duality

Consider the optimization problem to find x∗ and v∗I = maxx miny x
TAy.

Observe:
▶ II plays a best response y against x.
▶ For a given x, player II sets yj > 0 if and only if his expected loss∑k

i=1 xiaij in column j is minimal.

▶ Hence,

vI =

ℓ∑
j=1

k∑
i=1

xiaijyj =
ℓ

min
j=1

k∑
i=1

xiaij

▶ For any x and the resulting utility vI obtained by I we thus know

vI ≤
k∑

i=1

xiaij for all j = 1, . . . , ℓ.
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Gain-Floor Optimization as a Linear Program

Maximize vI

subject to vI −
k∑

i=1

xiaij ≤ 0 for all j = 1, . . . , ℓ

k∑
i=1

xi = 1

xi ≥ 0 for all i = 1, . . . , k

vI ∈ R

(1)
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Loss-Ceiling Optimization as a Linear Program

Similar arguments yield a linear program for loss-ceiling minimization.

Minimize vII

subject to vII −
ℓ∑

j=1

aijyj ≥ 0 for all i = 1, . . . , k

ℓ∑
j=1

yj = 1

yj ≥ 0 for all j = 1, . . . , ℓ

vII ∈ R

(2)

In the appendix we show that this represents the LP-dual of the Gain-Floor
LP (1).
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Implications

Finding optimal strategies for players I and II can be formulated as dual linear
programs.

Strong duality in Linear Programming:
▶ Consider a linear program with a feasible optimum solution
▶ Let f∗ be the optimal objective function value
▶ Then the dual has a feasible optimum solution, objective function value g∗

▶ Strong Duality: It holds that f∗ = g∗.

Thus, strong duality proves the minimax theorem.
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Example

(
5 1 2
1 4 3

)

Max. vI
s.t. vI − 5x1 − 1x2 ≤ 0

vI − 1x1 − 4x2 ≤ 0
vI − 2x1 − 3x2 ≤ 0

x1 + x2 = 1
x1, x2 ≥ 0

vI ∈ R

x∗ = (0.4, 0.6)
v∗I = 2.6

Min. vII
s.t. vII − 5y1 − 1y2 − 2y3 ≥ 0

vII − 1y1 − 4y2 − 3y3 ≥ 0

y1 + y2 + y3 = 1
y1, y2, y3 ≥ 0

vII ∈ R

y∗ = (0.2, 0, 0.8)
v∗II = 2.6

Is (x∗, y∗) a mixed Nash equilibrium?
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Mixed Nash equilibrium

Corollary
A state (x, y) in a 2-player zero-sum game is a mixed Nash equilibrium

⇔ x and y are optimal strategies for the players.

Proof (⇒):
▶ Consider (x, y) and assume x is suboptimal (similar for y suboptimal)
▶ There is y′ that achieves uII(x, y

′) > −v, thus uI(x, y
′) < v.

▶ To be NE we must have uII(x, y) ≥ uII(x, y
′), so uI(x, y) < v.

▶ If uI(x, y) < v, I can improve by optimal strategy ⇒ (x, y) no mixed NE.
(⇐):
▶ Suppose both play optimal, but player I has a better strategy x′

▶ This means uI(x
′, y) > v, but then y is suboptimal for II

▶ Same argument for player II having a better strategy.
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Mixed Nash equilibrium

Corollary
All mixed Nash equilibria in a 2-player zero-sum game yield an expected utility
of v (−v) for player I (II).

We can find optimal strategies by solving the linear programs (1) and (2).
There are efficient algorithms for solving linear programs, which proves the
following result:

Theorem
In 2-player zero-sum games a mixed Nash equilibrium can be computed in
polynomial time.
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Constructing the Dual

We construct an upper bound on vI for every solution of (1).

▶ Consider a solution (vI, x) of (1).
▶ We take a linear combination of the constraints to construct an upper

bound. In particular, we use multipliers zj and wI :

zj ·
(
vI −

∑k
i=1 xiaij

)
≤ zj · 0 for each j and

wI ·
∑k

i=1 xi = wI · 1

Here zj ≥ 0 to keep the correct inequality.
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Constructing the Dual

▶ Now we try to get an upper bound by using the linear combination:

vI ≤
ℓ∑

j=1

zj

(
vI −

k∑
i=1

xiaij

)
+ wI ·

k∑
i=1

xi

=

(
ℓ∑

j=1

zj

)
· vI +

k∑
i=1

(
wI −

ℓ∑
j=1

aijzj

)
· xi

≤
ℓ∑

j=1

zj · 0 + wI · 1 = wI

▶ This works if the first inequality is fulfilled, and this holds if the following
conditions for coefficients for the vI and xi on l.h.s. and r.h.s. are true:

1 =
∑ℓ

j=1 zj (Same ones because vI ∈ R.)
0 ≤ wI −

∑ℓ
j=1 aijzj (Possibly larger ones, because xi ≥ 0.)

What is the best upper bound wI that can be obtained in this way?
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Finding the best Upper Bound

Minimize wI

subject to wI −
ℓ∑

j=1

aijzj ≥ 0 for all i = 1, . . . , k

ℓ∑
j=1

zj = 1

zj ≥ 0 for all j = 1, . . . , ℓ

wI ∈ R

(3)

This linear program is called the dual program of (1), wI and zj are the dual
variables.

Note that this represents exactly the optimization problem to find the
loss-ceiling and an optimal strategy of player II (with wI = vII and zj = yj)!
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