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Mechanisms with Money

I Set A of possible outcomes.

I Goal: Choose a desired outcome a ∈ A.

I Players have quantifiable preferences over outcomes. Common currency
enables utility transfer between players.

I Preference of player i is given by a valuation function vi : A→ R from a
commonly known set Vi ⊆ RA

I vi is private information of player i.

I Mechanism to determine a good outcome a ∈ A:
1. Ask every player i for a “bid” bi, i.e., her valuation (direct revelation)
2. Determine a desired outcome a ∈ A
3. Determine payments mi for every player i

I Utility of player i is vi(a)−mi, quasi-linear utilities.
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Example: Sealed Bid Auction

A single item is sold to one customer.

Customer 1 2 3 4 5

Value 9 1 20 11 14

Bidders initially report values using a “sealed bid”.
Social Choice: Winner is bidder with highest bid.
Payments: Find payments to ensure incentive-compatibility

I No payments: Bidders try to bid unboundedly high values.

I Payments = Bids: Bidders try to guess whether they are the highest
bidder, estimate the second highest bid and bid a slightly higher value.
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Vickrey Second Price Auction

Payment of the winner is the second largest bid.

Value 9 1 20 11 14

Payment 0 0 14 0 0

Utility 0 0 6 0 0

A mechanism is called incentive compatible if, for every bidder i and every set
of bids of other players, truthful revelation of vi is maximizing the utility for i.

Proposition

The Vickrey auction is incentive compatible.
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Example

Value ? ? 20 ? ?

Bid 5 11 x 2 14

Payment 14

Utility 6

Case 1: i wins with true value x = 20, then for all x ≥ 14 utility 6, for x < 14
utility 0.

Value ? ? 20 ? ?

Bid 5 11 x 2 24

Payment 0

Utility 0

Case 2: i loses with true value x = 20, then for all x < 24 utility 0, for x ≥ 24
utility −4.
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Definitions

Direct Revelation Mechanism

I Notation: V = V1 × . . .× Vn and v ∈ V
I v = (v1, . . . , vn), vi is type of bidder i

I Bidder “bids”: Reports a type to the mechanism

I Social choice function f : V → A, payment functionss p1, . . . , pn

I pi : V → R specifies the amount player i pays.

Incentive Compatibility (IC)

I Consider every bidder i, every profile v ∈ V , and every alternative v′i ∈ Vi.

I We denote outcomes by a = f(vi, v−i) and b = f(v′i, v−i)

I Mechanism (f, p1, . . . , pn) is incentive compatible if the utility

vi(a)− pi(vi, v−i) ≥ vi(b)− pi(v′i, v−i)

.
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Sealed-Bid Auction

Bidder 1 2 3 4 5

Value 9 1 20 11 14

I Outcomes A = {1, 2, 3, 4, 5}, where i means “i wins”

Outcome 1 2 3 4 5
v1 9 0 0 0 0
v2 0 1 0 0 0
etc.

I Social Choice: f(v) = argmaxi{vi(i)}

I Payments: pi(v) = 0 if f(v) 6= i,
otherwise pi(v) = maxj 6=i vj(j).
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VCG Mechanism

Definition
A Vickrey-Clarke-Groves (VCG) mechanism is given by

I f(v) ∈ argmaxa∈A
∑

i vi(a), and

I for every v ∈ V and every bidder i

pi(v) = hi(v−i)−
∑
j 6=i

vj(f(v)) ,

with h1, . . . , hn being arbitrary functions hi : V−i → R.

Observations:

I VCG mechanism picks outcome a that maximizes social welfare
∑

j vj(a)

I hi does not depend on the own “bid” vi

I Utility of player i when f(v) = a:

vi(a)− pi(v) =
∑
j

vj(a)− hi(v−i)
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VCG is IC

Theorem
Every VCG mechanism is incentive compatible.

Proof:

I Given types v, let v′i 6= vi be a “lie” for bidder i

I Let a = f(v) and b = f(v′i, v−i).

I Utility of i declaring vi is vi(a) +
∑

j 6=i vj(a)− hi(v−i)

I Utility of i declaring v′i is vi(b) +
∑

j 6=i vj(b)− hi(v−i)

I Utility is maximized when outcome maximizes social welfare
∑

j vj(x).

I VCG mechanism maximizes social welfare,
∑

j vj(a) ≥
∑

j vj(b).

I By declaring v′i bidder i, VCG picks b. However, b is optimal for i’s lie, but
possibly suboptimal for her real utility.

I VCG aligns every bidder incentive with the social incentives.
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Desirable Properties of Payments

Definition

I A mechanism is (ex-post) individually rational if bidders always get
non-negative utility, i.e. for all v ∈ V we have vi(f(v))− pi(v) ≥ 0.

I A mechanism has no positive transfers if no bidder is ever paid money, i.e.
for all v ∈ V and all i we have pi(v) ≥ 0.

Definition (Clarke Rule)

The payment functions resulting from hi(v−i) = maxb∈A
∑

j 6=i vj(b) are called
Clarke pivot payment.
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Clarke Rule

Using Clarke pivot payment the payments of bidder i become

pi(v) = max
b∈A

∑
j 6=i

vj(b)−
∑
j 6=i

vj(f(v))

Payment is the “total damage” that i causes to the other players by her
presence in the system. Each player internalizes externalities.

Lemma
A VCG mechanism with Clarke pivot payments makes no positive transfers. If
vi(a) ≥ 0 for all vi ∈ Vi and a ∈ A, then it is individually rational.
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Clarke Rule

Proof:

I Let a = f(v) and b = argmaxa′∈A
∑

j 6=i vj(a
′)

I No positive transfers (by definition)∑
j 6=i

vj(b)−
∑
j 6=i

vj(a) ≥ 0

I Individually rational

vi(a) +
∑
j 6=i

vj(a)−
∑
j 6=i

vj(b) ≥
∑
j

vj(a)−
∑
j

vj(b) ≥ 0
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Example: Bilateral Trade

trade no-trade

Seller −vs 0

Buyer vb 0

I Trade occurs if vb > vs, no-trade if vs > vb

I Analyze VCG Mechanism, should not subsidize trade.
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Example: Bilateral Trade

trade no-trade

Seller −vs 0

Buyer vb 0

I VCG payments for no-trade:
Seller payments: hs(vb)− 0, Buyer payments: hb(vs)− 0
No additional payments by the mechansim, so hs(vb) = hb(vs) = 0.

I VCG payments for trade:
Seller payments: hs(vb)− vb, Buyer payments: hb(vs) + vs
Seller receives vb, but buyer pays only vs < vb.

I Not budget-balanced: VCG mechanism subsidizes trade!
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Example: Procurement or Reverse Auction

I Auctioneer buys service

I Participants offer service, each one has (private) cost

I Auctioneer pays participants

I Negative utility, negative payments

I Vickrey reverse auction:
Pick participant with smallest bid, pay the second-smallest bid

Corollary

The Vickrey reverse auction is incentive compatible.
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Vickrey Reverse Auction is IC

Case 1: If bidding his true value, player i wins.

Value ? ? -7 ? ?

Bid -9 -11 x -17 -14

Payment -9

Utility 2

Case 2: If bidding his true value, player i loses.

Value ? ? -12 ? ?

Bid -9 -11 x -17 -24

Payment 0

Utility 0
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Example: Buying a Path in a Network

Reverse auction:
Bidders are edges in a network. Each edge has private cost ce for being used.
Mechanism wants to buy an s-t-path.
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Example: Buying a Path in a Network

I Outcomes are s-t-paths in graph G

I VCG picks picks shortest path P ∗ for reported costs ce (= maximizes wrt.
values ve = −ce)

I Payments for edge e ∈ P ∗ to the mechanism:
he(c−e)−

∑
e′∈P∗,e′ 6=e−ce′ = he(c−e) + c(P ∗ − e)

I We use he(c−e) = maxP∈G−e

∑
e∈P −ce = −c(P ∗−e), where P ∗−e is a

shortest s-t-path in the graph that does not contain edge e.
This choice for he is not exaktly the Clarke Rule (Why?)

I Total payment for e ∈ P ∗ is c(P ∗ − e)− c(P ∗−e) ≤ 0, i.e., edge e receives
money from the mechanism.

I Any edge e 6∈ P ∗ has cost 0 and gets no payment.
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Truth-telling is a dominant strategy!
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More incentive-compatible mechanisms?

The VCG mechanism is incentive compatible and maximizes social welfare f .

Are there other social choice functions f that can be implemented, i.e.
augmented using suitable payments into incentive-compatible mechanisms?

Are there different types of incentive-compatible mechanisms besides VCG?
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Direct Characterization

Proposition

A mechanism is incentive compatible if and only if it satisfies the following
conditions hold for every bidder i and every v−i:

1. The payment pi does not depend on vi, but only on the outcome, i.e., for
every v−i there exist prices pa ∈ R such that for all vi with f(vi, v−i) = a
we have pi(vi, v−i) = pa.

2. The mechanism optimizes for each bidder, i.e., for every vi it holds that
f(vi, v−i) ∈ argmaxa∈A′{vi(a)− pa}, where A′ is the set of alternatives
in the range of f(·, v−i).

Proof:
Conditions hold ⇒ IC: obvious.

Martin Hoefer Algorithmic Game Theory 2019/20

Designing Incentive-Compatible Mechanisms



VCG Characterization Single-Parameter Revelation Principle Approximation Revenue Maximization

Proof Direct Characterization

1. The payment pi = pa does not depend on vi, but only on the outcome
a = f(vi, v−i).

2. The mechanism optimizes for each bidder.

IC ⇒ Conditions hold:

I Condition 1:
vi 6= v′i yield same outcome for fixed v−i. Payment
pi(vi, v−i) > pi(v

′
i, v−i) then bidder i with vi is motivated to lie v′i.

I Condition 2:
If not, then there is a better outcome a′ ∈ argmaxa(vi(a)− pa) and some
v′i that gives a′ = f(v′i, v−i). Hence, bidder i with vi is motivated to lie
v′i.
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Affine Maximizer

Definition
A social choice function f is an affine maximizer if there is a subset A′ ⊂ A,
bidder weights w1, . . . , wn ∈ R, and outcome weights ca ∈ R for each a ∈ A,
such that

f(v1, . . . , vn) ∈ argmax
a∈A′

{
ca +

∑
i

wivi(a)

}
.

Proposition

Suppose f is an affine maximizer, and hi is an arbitrary function independent
of vi. Suppose bidder i with wi = 0 pays pi(v) = 0, and bidder i with wi > 0
pays

pi(v) = hi(v−i)−
1

wi

∑
j 6=i

wjvj(a) + ca

 .

Then (f, p1, . . . , pn) is incentive compatible.
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(Only) Affine Maximizers can be implemented

Proof:

I If wi = 0, then i has no influence on the mechanism.

I With pi = 0 same utility for every bid of i.

I If wi > 0, then assume wlog hi = 0. Utility of i if a is chosen:

vi(a) +
1

wi

∑
j 6=i

wjvj(a) + ca

 .

I Multiply by wi > 0, expression is maximized when ca +
∑

j wjvj(a) is
maximized.

I f affine maximizer, true type is a dominant strategy for i.

Theorem (Roberts 1979)

Suppose |A| ≥ 3, f is surjective, Vi = RA for every i, and (f, p1, . . . , pn) is
incentive compatible. Then f must be an affine maximizer.
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“Stuff times Value” Valuations

Single-parameter valuations have a simple structure:

I For every outcome a ∈ A, bidder i receives some amount of “stuff”

I Let xi(a) ∈ R be the amount of “stuff” that bidder i gets in outcome a

I Valuation based on a single parameter:

Value per unit of stuff: ti ∈ R
Valuation function: vi(a) = ti · xi(a)

Definition
A single-parameter domain Vi is defined by (public) function xi : A→ R and
domain [t0i , t

1
i ]. The set Vi contains all vi such that there is t0i ≤ ti ≤ t1i with

vi(a) = ti · xi(a) .

The single parameter ti is private information.

Overload notation: vi refers to both, valuation function and parameter ti.
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Examples

Simple Examples:

I Single-item auction: xi(a) ∈ {0, 1} and
∑

i xi(a) ≤ 1.

I k identical items: xi(a) ∈ {0, 1, . . . , k} and
∑

i xi(a) ≤ k.

I s-t-path: xe(a) ∈ {0, 1} and P (x) = {e | xe(a) = 1} is an s-t-path in G.

Sponsored-Search Auction:

I A search result page has several advertisement slots

I Search engine auctions off the slots to advertisers

I Slot k has a known click-through rate (CTR) αk ≥ 0

I Firm i has private value vi per click for its ad

I An outcome a ∈ A is a matching of adslots to firms

I xi(a) = αk if firm i gets a slot k, and xi(a) = 0 otherwise

I Valuation of firm i is vi(a) = vi · xi(a)

Are there IC mechanisms for single-parameter domains that are not affine
maximizers?
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Sponsored-Search Auctions
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Example: Second-Highest Bid Wins

We auction a single good and assign it to the second-highest bidder. Are there
payments such that the resulting mechanism is IC?

Consider some bidder i and fix the other bids v−i.

It holds xi(a) ∈ {0, 1}. Direct characterization shows: i pays one of two prices,
p1i or p0i , depending on whether she is second-highest bidder or not.

Suppose y is a bid that makes i the second-highest bidder, and z is one that
makes her the highest bidder, with y < z.

If vi = y, then i shall not want to lie z. Hence: y · 1− p1i ≥ y · 0− p0i .
If vi = z, then i shall not want to lie y. Hence: z · 0− p0i ≥ z · 1− p1i .

This implies y ≥ z, a contradiction.

There are no payments that yield an IC mechanism. The social choice function
is not monotone – a higher bid kann reduce the received amount of stuff.
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Monotonicity

Definition
A social choice function f on a single parameter domain f is called monotone
in vi if for every v−i and every v′i ∈ Vi with v′i ≥ vi

xi(f(v
′
i, v−i)) ≥ xi(f(vi, v−i)) .

Normalized mechanism: Using the smallest bid t0i , bidder i never gets stuff and
always pays nothing, i.e., xi(t

0
i , v−i) = 0 and pi(t

0
i , v−i) = 0 for every v−i.
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Charakterization

Theorem (Myersons Lemma)

A normalized mechanism (f, p1, . . . , pn) on a single parameter domain is
incentive compatible if and only if the following conditions hold:

I f is monotone in every vi, and

I the payments are given by

pi(vi, v−i) = vi · xi(f(v))−
∫ vi

t0i

xi(f(t, v−i))dt.

Proof:
Fix v−i. Let y < z be two possible private values of i.
We write ay = f(y, v−i) and az = f(z, v−i).

Martin Hoefer Algorithmic Game Theory 2019/20

Designing Incentive-Compatible Mechanisms



VCG Characterization Single-Parameter Revelation Principle Approximation Revenue Maximization

Proof Myersons Lemma

IC implies:
y · xi(ay)− pi(ay) ≥ y · xi(az)− pi(az) (1)

and
z · xi(az)− pi(az) ≥ z · xi(ay)− pi(ay) (2)

Sum (1) and (2) and rearrange:

z · (xi(az)− xi(ay)) ≥ y · (xi(az)− xi(ay))

Since z > y, we know xi(az) ≥ xi(ay). Hence, IC ⇒ f monotone.

We next show that (IC ∧ f monotone) ⇒ payments as given in the Lemma.
We show this only for the special case with xi(a) ∈ N.

Martin Hoefer Algorithmic Game Theory 2019/20

Designing Incentive-Compatible Mechanisms



VCG Characterization Single-Parameter Revelation Principle Approximation Revenue Maximization

Proof Myersons Lemma

Suppose xi monotone and xi(a) ∈ {0, 1, 2, . . . , k}, a step function. xi jumps
at z1 ≤ z2 ≤ . . . ≤ z` by k1, k2, . . . , k`, where

∑`
j=1 kj ≤ k.

0

1

2

3

4

z1 z2 z3
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Proof Myersons Lemma

(1) and (2) yield

z · (xi(az)− xi(ay)) ≥ pi(az)− pi(ay) ≥ y · (xi(az)− xi(ay))

In addition, pi(az) = pi(ay) if xi(az) = xi(ay). Set z = zi and y = zi − ε,
then with ε→ 0 we see that pi jumps at zi by ziki. Thus

pi(az) =
∑

j:zj≤z

zjkj = z · xi(az)−
∫ z

t0i

xi(at)dt .

z1k1
0

1

2

3

4

z1 z2 z3z
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Proof Myersons Lemma

(1) and (2) yield

z · (xi(az)− xi(ay)) ≥ pi(az)− pi(ay) ≥ y · (xi(az)− xi(ay))

In addition, pi(az) = pi(ay) if xi(az) = xi(ay). Set z = zi and y = zi − ε,
then with ε→ 0 we see that pi jumps at zi by ziki. Thus

pi(az) =
∑

j:zj≤z

zjkj = z · xi(az)−
∫ z

t0i

xi(at)dt .

z1k1 + z2k2

0

1

2

3

4

z1 z2 z3z
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Proof Myersons Lemma

(1) and (2) yield

z · (xi(az)− xi(ay)) ≥ pi(az)− pi(ay) ≥ y · (xi(az)− xi(ay))

In addition, pi(az) = pi(ay) if xi(az) = xi(ay). Set z = zi and y = zi − ε,
then with ε→ 0 we see that pi jumps at zi by ziki. Thus

pi(az) =
∑

j:zj≤z

zjkj = z · xi(az)−
∫ z

t0i

xi(at)dt .

pi(z, v−i) = pi(az)

0

1

2

3

4

z1 z2 z3z
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Proof Myersons Lemma

(1) and (2) yield

z · (xi(az)− xi(ay)) ≥ pi(az)− pi(ay) ≥ y · (xi(az)− xi(ay))

In addition, pi(az) = pi(ay) if xi(az) = xi(ay). Set z = zi and y = zi − ε,
then with ε→ 0 we see that pi jumps at zi by ziki. Thus

pi(az) =
∑

j:zj≤z

zjkj = z · xi(az)−
∫ z

t0i

xi(at)dt .

z · xi(az)

0

1

2

3

4

z1 z2 z3z

Martin Hoefer Algorithmic Game Theory 2019/20

Designing Incentive-Compatible Mechanisms



VCG Characterization Single-Parameter Revelation Principle Approximation Revenue Maximization

Proof Myersons Lemma

(1) and (2) yield

z · (xi(az)− xi(ay)) ≥ pi(az)− pi(ay) ≥ y · (xi(az)− xi(ay))

In addition, pi(az) = pi(ay) if xi(az) = xi(ay). Set z = zi and y = zi − ε,
then with ε→ 0 we see that pi jumps at zi by ziki. Thus

pi(az) =
∑

j:zj≤z

zjkj = z · xi(az)−
∫ z

t0i

xi(at)dt .

∫ z

t0i
xi(at)dt

0

1

2

3

4

z1 z2 z3z
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Proof Myersons Lemma

For every IC mechanism: (1) monotone f and (2) payments as in the Lemma.

Finally, are these two conditions also sufficient, i.e., is every mechanism with
these conditions also IC?

Valuation with truthful bid:

0

1

2

3

4

z1 z2 z3vi
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Proof Myersons Lemma

For every IC mechanism: (1) monotone f and (2) payments as in the Lemma.

Finally, are these two conditions also sufficient, i.e., is every mechanism with
these conditions also IC?

Payments with truthful bid:

0

1

2

3

4

z1 z2 z3vi
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Proof Myersons Lemma

For every IC mechanism: (1) monotone f and (2) payments as in the Lemma.

Finally, are these two conditions also sufficient, i.e., is every mechanism with
these conditions also IC?

Utility with truthful bid:
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Proof Myersons Lemma

For every IC mechanism: (1) monotone f and (2) payments as in the Lemma.

Finally, are these two conditions also sufficient, i.e., is every mechanism with
these conditions also IC?

Valuation with bid z′ > vi:
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Proof Myersons Lemma

For every IC mechanism: (1) monotone f and (2) payments as in the Lemma.
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Proof Myersons Lemma

For every IC mechanism: (1) monotone f and (2) payments as in the Lemma.

Finally, are these two conditions also sufficient, i.e., is every mechanism with
these conditions also IC?

Utility with bid z′ > vi has not improved!
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Proof Myersons Lemma

For every IC mechanism: (1) monotone f and (2) payments as in the Lemma.

Finally, are these two conditions also sufficient, i.e., is every mechanism with
these conditions also IC?

Valuation with bid z′ < vi:
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Proof Myersons Lemma

For every IC mechanism: (1) monotone f and (2) payments as in the Lemma.

Finally, are these two conditions also sufficient, i.e., is every mechanism with
these conditions also IC?

Payment with bid z′ < vi:
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Proof Myersons Lemma

For every IC mechanism: (1) monotone f and (2) payments as in the Lemma.

Finally, are these two conditions also sufficient, i.e., is every mechanism with
these conditions also IC?

Utility with bid z′ < vi has not improved!
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Example: Buying a Path in a Network (Part 2)

Reverse Auction and Min-Max-Paths:
Bidders are edges in a network. Each edge e has private cost ce for being used.
Mechanism wants to buy an s-t-path.

Choose a path P ∗ that minimizes the maximum cost of any edge in the path.
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Min-Max is monotone!

If e reduces her bid, she can only join or stay in P ∗. Monotone
xi(f(vi, v−i)) ∈ {0, 1}, at most one step. IC:

e 6∈ P ∗ gets no payment.
e ∈ P ∗ gets maximum edge cost on min-max s-t-path in G− {e}
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Mechanisms with Communication

All results so far apply to mechanisms with direct revelation.

Are there fundamentally different mechanisms with more complex
communication?

For example, a mechanism could ask in k rounds sequentially some yes/no
questions, and the bidders must react to that. Or a mechanim would present in
every round two outcomes and ask each bidder which outcome she likes better.
Or some other interaction rule, or...

For general communication between mechanism and bidder i we assume that,
for every bidder i, there is a set Xi of possible actions. Each xi ∈ Xi

represents a collection of answers bidder i can use to reply to the questions of
the mechanism.
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General Mechanisms with Action Spaces

General Mechanism with Action Space:

I Action space Xi for bidder i, we set X = X1 × . . .×Xn.

I Strategy si : Vi → Xi maps every possible valuation vi ∈ Vi to an action.

I Every bidder i picks a strategy si and, hence, the action xi = si(vi).

I Social choice function g : X → A maps chosen actions to an outcome

I Payment pi : X → R depends on chosen actions

I Quasi-linear Utility: ui(x) = vi(g(x))− pi(x)

Direct revelation is the case Xi = Vi. With her strategy a bidder directly
reports her (possibly incorrect) private valuation. More generally, the set of
actions Xi is not necessarily identical to the set of valuations Vi. Using
strategy si a bidder determines for every possible private valuation a choice of
action (i.e., the collection of answers it gives to the mechanims).
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Revelation Principle

Consider a strategy profile s(v) = (s1, . . . , sn), and suppose s is a
dominant-strategy equilibrium for the general mechanism. Let f(v) = g(s(v)).
We say the mechanism implements the social choice function f in dominant
strategies.

For an IC mechanism with direct revelation, truth-telling is a dominant strategy
for every bidder. Formally, for such a mechanism there is a dominant-strategy
equilibrium s with si(vi) = vi for all vi ∈ Vi and every bidder i.

The revelation principle says that complex communication cannot entail
fundamentally different mechanisms with dominant-strategy equilibria. Thus,
we can continue to restrict attention to mechanisms with direct revelation.
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Revelation Principle

Proposition (Revelation Principle)

There is general mechanism M that implements f in dominant strategies.
⇐⇒

There is IC mechanism M ′ with direct revelation and social choice function f .

Proof:

n

1

· · ·

v1

vn

s1(v1)

sn(vn)

M

g(s(v)) = f(v)

p1(s(v))

· · ·
pns(v))
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Revelation Principle

Proposition (Revelation Principle)

There is general mechanism M that implements f in dominant strategies.
⇐⇒

There is IC mechanism M ′ with direct revelation and social choice function f .

Proof:

n

1

· · ·

v1

vn

s1(v1)

sn(vn)

M

g(s(v)) = f(v)

p1(s(v))

· · ·
pns(v))

M ′
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Knapsack Auction

Myersons Lemma implies that designing incentive-compatible mechanisms
reduces to designing monotone social choice functions. This raises issues with
computational complexity.

As an example consider a Knapsack Auction:

A TV station wants to fill a commerical break of G seconds with spots. There
is a set I of n firms that would like to broadcast their spot. Every firm i ∈ I
I delivers spot of length gi ≤ G seconds (gi public knowledge),

I has valuation vi ≥ 0 if her spot is included (vi private information), and
valuation 0 otherwise.

The knapsack auction is obviously a single-parameter domain. Let us first
consider a VCG mechanism.
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VCG Mechanism for the Knapsack Auction

VCG Mechanism

I Query valuations vi from every firm i ∈ I
I Choose subset S ⊆ I of spots that maximizes social welfare:

f(v) = argmax
S⊆I

{∑
i∈S

vi

∣∣∣∣∣ ∑
i∈S

gi ≤ G

}
I Payments pi(v) as given by Myersons Lemma

VCG must compute optimal solutions for the knapsack problem, but this
problem is NP-hard. Thus, there is a tension between three desirable properties
of the mechanism:

(1) incentive compatible

(2) maximizes social welfare

(3) polynomial-time computation
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Complexity of Incentive-Compatible Mechanisms

The conflict arises between properties (2) and (3). For decades, this conflict
has been studied in the area of approximation algorithms. By using these
algorithms, we soften property (2) into

(1) incentive compatible

(2’) approximates social welfare as good as possible

(3) polynomial-time computation

However, we cannot use arbitrary approximation algorithms. Since we need to
fulfill (1), there must exist payments that yield an incentive-compatible
mechanism. In single-parameter domains we must design monotone
approximation algorithms with good performance.

Central issue in algorithmic mechanism design: How much social welfare is lost
due to the additional requirement of incentive compatibility?
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Approximation Algorithms and Mechanism Design

How well do monotone approximation algorithms perform compared to
arbitrary approximation algorithms?
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Approximation Ratio

I We denote by S∗ an optimal subset of spots.

I c-approximation algorithm: Returns subset T ⊆ I with∑
i∈T

vi ≥ 1

c
·
∑
i∈S∗

vi

I A trivial n-approximation:
Choose a single spot with maximum value. IC is trivial – we treat the
commericial break as a single item and give it to the highest bidder (and
use the second-highest valuation as payment for an IC mechanism)

Too easy – in “Theoretische Informatik 1” we proved:

Theorem
The knapsack problem has a fully-polynomial-time approximation scheme
(FPTAS), i.e., for every ε > 0 we can compute a (1 + ε)-approximate solution
in time O(n3/ε).

Unfortunately, this algorithm is not monotone (Exercise)
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Greedy-Algorithm for the Knapsack Auction

INPUT: (gi, vi) for every firm i ∈ I
OUTPUT: Set S of chosen spots.

1. Sort firms:
v1
g1
≥ . . . ≥ vn

gn

2. Set S′ ← ∅ and j ← 1, denote vmax = maxj vj

3. While
(
gj +

∑
k∈S′ gk

)
≤ G do:

4. S′ ← S′ ∪ {j} and j ← j + 1

5. If vmax >
∑

k∈S′ vk then S ← argmaxj vj; else S ← S′

Theorem
Greedy is 2-approximate and monotone. There is an IC mechanism for the
knapsack auction that guarantees at least half of the optimal social welfare.
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Examples

The total length is G = 100 seconds.

Firm 1 2 3 4 5

vi 45 20 45 40 50

gi 15 25 60 50 90

After sorting in step 1 we obtain the order of firms (1,4,2,3,5):

45/15 ≥ 40/50 = 20/25 ≥ 45/60 ≥ 50/90.

The loop in steps 2-4 computes S′ = {1, 4, 2}.

In step 5

50 = vmax <
∑
j∈S′

vj = 105.

The result is, thus, S = {1, 4, 2} with welfare 105.

Optimum: S∗ = {1, 2, 3} with welfare 110.
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Examples

The total length is G = 100 seconds.

Firm 1 2 3 4 5

vi 45 20 45 40 260

gi 15 25 60 50 90

After sorting in step 1 we obtain the order of firms (1,5,4,2,3):

45/15 ≥ 260/90 ≥ 40/50 = 20/25 ≥ 45/60.

The loop in steps 2-4 computes S′ = {1}.

In step 5

260 = vmax >
∑
j∈S′

vj = 45.

The result is, thus, S = {5} with welfare 260.

Optimum: S∗ = {5} with welfare 260.
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2-Approximation

Proof:
We can directly observe that Greedy is monotone (Exercise).

To bound the approximation ratio we resort to the fractional relaxation, in
which every spot i can be broken into arbitrary pieces, and we can send any
fraction xi ∈ [0, 1].

For the fractional relaxation we optimize:

ffrak(v) = arg max
x∈[0,1]n

{∑
i

xivi

∣∣∣∣∣ ∑
i

xigi ≤ G

}

The fractional relaxation allows more solutions. Hence, the optimal fractional
solution x∗ can only be better than the optimal (binary) solution S∗ to the
knapsack problem: ∑

i∈S∗
vi ≤

∑
i∈I

x∗i vi.
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2-Approximation

x∗ yields as much value per second as possible for the ad break. Suppose the
spots are numbered w.r.t. value per second v1/g1 ≥ . . . ≥ vn/gn. We choose
as many seconds as possible from spot 1, then as many as possible from spot 2,
then... until G seconds are chosen.

This is exactly the approach of Greedy in steps 2-4! At termination, however,
the fractional solution could include an additional fraction of the next spot j′ in
the order: ∑

i∈I

x∗i vi =
∑
k∈S′

1 · vk + x∗j′vj′

Hence, we obtain an approximation ratio of∑
k∈S∗ vk∑
k∈S vk

=

∑
k∈S∗ vk

max
{
vmax,

∑
k∈S′ vk

} ≤
∑

k∈S′ vk + x∗j′vj′

max
{
vmax,

∑
k∈S′ vk

}
≤ 2 ·

∑
k∈S′ vk + x∗j′vj′∑
k∈S′ vk + vmax

≤ 2 .
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Payments

In this problem, every firm gets a binary amount of stuff – for outcome a ∈ A,
the spot i is either included (xi(a) = 1) or not (xi(a) = 0). Every incentive-
compatible mechanism yields a monotone, binary step function xi. The value
where xi jumps from 0 to 1 is called critical value ci(v−i). Obviously, it
depends on the bids v−i of other firms.

1

ci

A normalized mechanism sets pi(v) = 0 for spots i that are not included. If
spot i is included, Myersons Lemma implies pi(v) = ci(v−i) · 1, i.e., firm i pays
(given fixed bids of other firms) her smallest bid that guarantees inclusion of
her spot.
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Payments

In this problem, every firm gets a binary amount of stuff – for outcome a ∈ A,
the spot i is either included (xi(a) = 1) or not (xi(a) = 0). Every incentive-
compatible mechanism yields a monotone, binary step function xi. The value
where xi jumps from 0 to 1 is called critical value ci(v−i). Obviously, it
depends on the bids v−i of other firms.

vi

ci · 1

1

ci

A normalized mechanism sets pi(v) = 0 for spots i that are not included. If
spot i is included, Myersons Lemma implies pi(v) = ci(v−i) · 1, i.e., firm i pays
(given fixed bids of other firms) her smallest bid that guarantees inclusion of
her spot.
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FPTAS

Consider the fully-polynomial-time approximation scheme for the knapsack
problem.

INPUT: (gi, vi) for every firm i ∈ I and ε > 0

OUTPUT: Set S of chosen spots.

1. Let vmax = maxi vi and s = ε · vmax/n

2. Round all valuations to integers: v′i = bvi/sc
3. Solve the knapsack problem with rounded valuations v′i

optimally using dynamic programming

4. Let S′ be the optimal solution for valuations v′i

5. S ← S′.

Dynamic programmierung in step 3 takes time O(n2 ·maxi v
′
i). By rounding

we know v′i ∈ {0, 1, . . . , bn/εc}. Thus, for constant ε > 0 the algorithm runs in
polynomial time O(n3/ε).
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Monotone FPTAS

The scheme is not monotone, because s depends on vmax. If we could set the
granularity in step 1 to a constant s = δ > 0 independent of v1, . . . , vn, then
the scheme would become monotone (Exercise).

Is there a single constant value δ using which we can always guarantee (without
knowledge about the valuations) to obtain a (1 + ε)-approximation? No!

Instead, we run the algorithm repeatedly, for infinitely many constant values δ.
Then we choose the best solution among all these infinitely many runs.

The scheme is monotone in vi for every single run. Social welfare is monotone
in vi. Therefore, choosing the best solution among all runs yields an algorithm
that is monotone in vi.
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Infinite “FPTAS”

INPUT: (gi, vi) for every firm i ∈ I and ε > 0

OUTPUT: Set S of chosen spots.

1. For all k = . . . ,−2,−1, 0, 1, 2, . . . do:
2. Set s(k) = ε · 2k/n
3. Round valuations: vi(k) = min{s(k) · bvi/s(k)c, 2k}
4. Solve problem with rounded valuations (dyn. prog.)

5. Let S(k) be the optimum solution for rounded valuations

6. Set S ← argmaxS(k)

∑
i∈S(k) vi(k)

(tie breaking w.r.t. smaller k)

For the value k∗ = dlog2(vmax)e we see

ε · vmax/n ≤ s(k∗) ≤ ε · 2 · vmax/n.

Hence, S′k∗ (and thus S) guarantees approximation ratio at most (1 + 2ε).
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True FPTAS

It is possible to show that the infinite scheme has to be called only for relatively
few values k ∈ {k∗ − dlog2 ne − 2, . . . , k∗}. For other values of k no better
solutions are obtained.

Hence, we do not need infinitely many runs. At most log2(n) + 4 many runs
for the correct range of k suffice. The correct range of k depends on k∗ and,
hence, depends on v1, . . . , vn. But this does not mean that we restrict k to
this range – it just means that the optimal solutions over all infinitely many
constant values of k must be located in this range. Thus, the monotonicity
arguments for constant values of k continue to hold.

For every run, dynamic programming takes time O(n2 ·maxi vi(k)/s(k)). The
smallest considered value k∗ − dlog2 ne − 2 yields the finest granularity and the
largest bound on the running time.
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True FPTAS

We see that

max
i

vi(k
∗ − dlog2 ne − 2)

s(k∗ − dlog2 ne − 2)

≤
⌊

vmax

ε · 2k∗−dlog2 ne−2/n

⌋
≤

⌊
n · 2k

∗

ε · 2k∗−log2(n)−3

⌋
≤ b8n2/εc .

Hence, dynamic programmierung needs time at most O(n4/ε) for every one of
the O(logn) many runs.

Theorem
There is a monotone FTPAS for the knapsack problem with running time
O(n4 logn/ε). There are incentive-compatible mechanisms for the knapsack
auction with polynomial running time, which guarantee a 1/(1 + ε)-fraction of
the optimal social welfare, for every constant ε > 0.
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Revenue Maximization

We have used money only as a means to enable incentive compatibility. Now
let’s consider money as objective of the mechanism.

Single-Item-Auction with Single Bidder

IC mechanisms are fixed-price mechanisms:

I Choose price p ≥ 0 (possibly at random) independent of bid.

I Sell item iff vi ≥ p.

Maximize social welfare: p = 0.
Maximize revenue: ??

For meaningful revenue maximizaion we need (partial) information about
possible valuations of the bidders. Otherwise, the achieved revenue can be
arbitrarily smaller than the optimal revenue.
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Average-Case and Distributions

I Single-parameter domain for every bidder i

I Distribution Vi for private parameter, vi ∼ Vi
I Vector of distributions V = (V1, . . . ,Vn)

I Private value of bidder i drawn independently from Vi: Bidder i has the
same distribution over vi, no matter what values have been drawn for
other bidders.

I Mechanism based on distributions, but pointwise IC: Truth-telling is
dominant strategy for every bidder i, for every possible value vi, and for all
possible v−i

I Bidder does not know distributions (i.e., any knowledge about
distributions does not change incentive to tell the truth)

I Distributions matter only in design and analysis of the mechanism, but
shall have no effect for the strategic behavior of bidders.
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Distributions

The cumulative distribution function (CDF) Fi(x) for distribution Vi is
Fi(x) = Pr vi∼Vi [vi ≤ x].
It has the density function fi(x), and it holds Fi(x) =

∫ x

−∞ fi(x)dx.

Example single-item auction with single bidder:
Using price p we obtain revenue p · (1− Fi(p)). Suppose Vi uniform over [0, 1],
then Fi(x) = x for x ∈ [0, 1]. Optimal revenue 1/4 with p = 1/2.

Definition
An optimal mechanism is an incentive-compatible mechanism (f, p1, . . . , pn)
that maximizes expected revenue

Ev∼V

[∑
i

pi(v)

]
.

Instead of analyzing payments directly, we consider a slightly different quantity.
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Virtual Values

Definition
For bidder i, let vi be the value, Fi the CDF, and fi the density function. The
virtual value of bidder i is

ϕi(vi) = vi −
1− F (vi)

fi(vi)
.

We have vi ≥ ϕ(vi) always. It is possible that vi ≥ 0 and ϕi(vi) ≤ 0.

Intuition: We would like to set vi as price, but we have to “sacrifice” an
amount of (1− F (vi)/fi(vi) for truthful information.

Example with uniform distribution over [0,1]:

I F (x) = x and f(x) = 1 for x ∈ [0, 1].

I Hence: ϕ(vi) = vi − (1− vi)/1 = 2vi − 1
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Virtual Values and Payments

For every bidder the expected payments equal the expected virtual value.

Lemma
If (f, p1, . . . , pn) is an incentive-compatible mechanism in a single-parameter
domain, and Vi is the CDF of bidder i, then for every bidder i and every v−i

Evi∼Vi [pi(vi, v−i)] = Evi∼Vi [ϕi(vi) · xi(f(vi, v−i))] .

We will prove this lemma in the end of the section.

Instead of total payment we consider virtual welfare
∑

i ϕi(vi) · xi(f(v)).
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Expected Payments and Virtual Welfare

The lemma implies the main result: The expected payments equal the expected
virtual welfare.

Theorem
If (f, p1, . . . , pn) is an incentive-compatible mechanism in a single-parameter
domain, and V is the vector of CDFs, then

Ev∼V

[∑
i

pi(v)

]
= Ev∼V

[∑
i

ϕi(vi) · xi(f(v))

]
.

Therefore, in order to maximize revenue we can concentrate on maximizing
virtual welfare. This has a lot of similarities with maximizing social welfare.
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Proof

Proof (Theorem):
We use the statement of the lemma and consider the expectation over v−i:

Ev∼V [pi(v)] = Ev−i∼V−iEvi∼Vi [pi(vi, v−i)]

= Ev−i∼V−iEvi∼Vi [ϕi(vi) · xi(f(vi, v−i))]

= Ev∼V [ϕi(vi) · xi(f(v))] .

Using linearity of expectation:

Ev∼V

[∑
i

pi(v)

]
=

∑
i

Ev∼V [pi(v)]

=
∑
i

Ev∼V [ϕi(vi) · xi(f(v))]

= Ev∼V

[∑
i

ϕi(vi) · xi(f(v))

]
.
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Optimal Auctions

An optimal IC mechanism (maximizes expected payments, and hence)
maximizes expected virtual welfare!

Other direction: Is a mechanism that maximizes expected virtual welfare also
an optimal IC mechanism?

Yes, but only if the virtual welfare is monotone in every vi, since this is
necessary for the mechanism to be IC. A sufficient condition for monotone
virtual welfare are regular distributions:

Definition
For a regular distribution Vi the virtual value ϕi(vi) = vi − 1−Fi(v)

fi(v)
is

non-decreasing in vi.

Corollary

An optimal mechanism with maximal expected revenue in a single-parameter
domain with regular distributions V1, . . . ,Vn optimizes the expected virtual
welfare of the bidders.
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Optimal Mechanisms for Regular Distributions

Two generalizations:

– We assume the bidders know all distributions and apply bidding strategies.
They issue bids depending on (the realization of) their private value and the
bidding strategies of other bidders and their (random) private values. A
mechanism is Bayes-IC if truth-telling is a Nash equilibrium in this game
(so-called Bayes-Nash equilibrium). Again, maximizing expected virtual welfare
yields optimal expected revenue. For regular distributions this even yields an
optimal Bayes-IC mechanism.

– For non-regular distributions there is a technique to make virtual welfare
monotone (so-called ironing). Hence, the optimal expected revenue for
non-regular distributions can be obtained by optimizing the (ironed) expected
virtual welfare.

Martin Hoefer Algorithmic Game Theory 2019/20

Designing Incentive-Compatible Mechanisms



VCG Characterization Single-Parameter Revelation Principle Approximation Revenue Maximization

Optimal mechanisms are surprisingly simple!

Single-item auction with n bidders and possibly different regular distributions:

I Item assigned to bidder with maximal virtual value maxi ϕi(vi). What if
maxi ϕi(vi) is negative? Then the item is not assigned at all.

I The value ϕ−1
i (0) is a reservation price for bidder i: vi must be high

enough to yield ϕi(vi) ≥ 0, otherwise she has no chance to get the item.

I If i gets the item, she pays the maximum of reservation price and
second-highest bid – where “second-highest bid” stems from the bidder
with second-highest virtual value. This second-highest virual value must
be translated into a second-highest bid from i’s perspective:
max(ϕ−1

i (0), ϕ−1
i (maxj 6=i ϕj(vj))).

I Example with all Vi identical and uniform on [0, 1]:
All functions ϕi(x) = 2x− 1, all reservation prices ϕ−1(0) = 1/2. It holds
ϕ−1

i (ϕj(x)) = x. The item is assigned to the highest bidder i if her bid
vi ≥ ϕ−1(0) = 1/2. Then she pays max(1/2,maxj 6=i vj). Optimal
auction is a Vickrey-Second-Price Auction with Reservation Prices!
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Proof of Lemma

Proof Sketch (Lemma):
Suppose a(t) = f(t, v−i) for fixed bids v−i. The goal is to show:

Evi∼Vi [pi(vi, v−i)] = Evi∼Vi [ϕi(vi) · xi(a(vi))] .

We use Myersons Lemma. Wlog t0i = 0, then the payments satisfy

pi(vi, v−i) = vi · xi(a(vi))−
∫ vi

0

xi(a(t))dt

=

∫ vi

0

t · x′i(a(t))dt

using integration by parts. We assume x to be differentiable. If xi is monotone
and bounded, then the proof follows with some more arguments and a suitable
interpretation of the derivative x′i.
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Proof of Lemma

Step 1:
The expected revenue from bidder i given fixed bids v−i is

Evi∼Vi [pi(vi, v−i)] =

∫ t1i

z=0

pi(z, v−i) fi(z)dz

=

∫ t1i

z=0

[∫ z

t=0

t · x′i(a(t))dt
]
fi(z)dz

The first equation uses independence of distributions – this implies that the
fixed v−i have no influence on Vi.

Step 2:
We have to simplify the formula and exchange integrations:∫ t1i

z=0

[∫ z

t=0

t · x′i(a(t))dt
]
fi(z)dz =

∫ t1i

t=0

[∫ t1i

z=t

fi(z)dz

]
t · x′i(a(t))dt

=

∫ t1i

t=0

(1− Fi(t)) · t · x′i(a(t))dt

which makes the expression clearer.
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Proof of Lemma

Step 3:
We again try to apply integration by parts and use

g(t) = (1− Fi(t)) · t and h′(t) = x′i(a(t))

Integration by parts yields

Evi∼Vi [pi(vi, v−i)] = (1− Fi(t)) · t · xi(a(t))
∣∣∣∣t1i
0

−
∫ t1i

t=0

xi(a(t)) · (1− Fi(t)− t · fi(t))dt

=

∫ t1i

t=0

(
t− 1− Fi(t)

fi(t)

)
· xi(a(t)) · fi(t)dt

=

∫ t1i

t=0

ϕi(t) · xi(a(t)) · fi(t)dt

= Evi∼Vi [ϕi(t) · xi(a(vi))]

as desired.
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An Alternative

Although the optimal auction is conceptually simple, it can be difficult to
implement in practice. Even for selling a single item we might need up to n
different reserve prices and virtual values, and, hence, exact knowledge about
every CDF Fi and every density fi.

In contrast, in the context of single-item auctions there is a simple alternative
for more revenue – more competition!

The following result considers the revenue of single-item auctions with
identical regular distributions for all bidders. We need just one extra bidder to
make the revenue of the simple Vickrey auction better than the revenue of the
optimal auction.
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Extra Competition

Theorem (Bulow, Klemperer 1996)

Suppose V is a regular distribution and n ∈ N. Let p be the payments of the
Vickrey second-price auction with n+ 1 bidders and p∗ the payments for the
optimal (for V) auction with n bidders. Then

Ev∼Vn+1

[
n+1∑
i=1

pi(v)

]
≥ Ev∼Vn

[
n∑

i=1

p∗i (v)

]
.

Proof:
For the analysis, we rely on a fictitious auction:

1. Simulate the optimal n-bidder auction for V on bidders 1, . . . , n

2. If the item does not get assigned, give it to bidder n+ 1 for free.

Obvious properties:

I The expected revenue of the fictitious auction for n+ 1 bidders is exactly
the expected revenue of the optimal auction for n bidders.

I The fictitious auction always assigns the item to exactly one bidder.

Martin Hoefer Algorithmic Game Theory 2019/20

Designing Incentive-Compatible Mechanisms



VCG Characterization Single-Parameter Revelation Principle Approximation Revenue Maximization

Proof

Now consider the optimal auction for n+ 1 bidders that must always assign the
item. This auction maximizes the expected virtual welfare (subject to the
constraint that it must always assign the item). Also, the auction always
assigns the item to the bidder with highest virtual value, even if the best virtual
value is negative.

The Vickrey auction always assigns the item to the highest bidder. Since V is
regular, the bidder with highest value is also the bidder with highest virtual
value. Therefore, the Vickrey auction is precisely the optimal auction that
always assigns the item.

The fictitious auction for n+ 1 bidders must always assign the item and
obtains the revenue of the optimal auction for n bidders with distribution V.

The Vickrey auction for n+ 1 bidders has the best revenue (wrt. V) of all
auctions that must always assign the item.
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