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Expert Problem: Example

In many applications we make decisions not once but repeatedly, say, every day,
without knowing the behavior of other actors or “nature” on that day. We
consider learning algorithms that enable us to cope with such problems.

Example:
▶ Suppose you are commuting day by day from home to Campus

Bockenheim and back.

▶ The traveling time per day is between 30 and 60 minutes depending on the
chosen route and the traffic situation.

▶ Suppose you know, say, three experts that are also commuting from your
area to campus and use different strategies for choosing the route.

We will show that you can become almost as fast as the best expert just by
imitating the expert choices.
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Expert Problem: Definition

Assume an adversarial online model with discrete time steps 1, . . . , T . Let [T ]
denote {1, . . . , T}.

Experts and Losses
▶ There are N experts numbered from 1 to N .
▶ In step t ∈ [T ], expert i ∈ [N ] experiences a loss of ℓti ∈ [0, 1]

(as chosen by an adversary or “nature”).
▶ Let Lt

i =
∑t

k=1 ℓ
k
i .

Combining Experts
▶ In step t, an online algorithm H chooses expert i ∈ [N ] with probability pti.
▶ The vector pt might depend on the loss vectors ℓ1, . . . , ℓt−1.
▶ The (expected) loss of H in step t is ℓtH =

∑
i∈[N ] p

t
iℓ

t
i.

▶ Let Lt
H =

∑t
k=1 ℓ

k
H .
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Greedy Algorithm

In the following, let Lt−1
min = mini∈[N ] L

t−1
i , for 1 ≤ t ≤ T .

Greedy Algorithm
At every time t,
▶ let St−1 = {i : Lt−1

i = Lt−1
min};

▶ let j = min{St−1};
▶ set ptj = 1, and pti = 0, for i ̸= j.

In the analysis of the Greedy algorithm, we assume for simplicity that all losses
are either 0 or 1 instead of real numbers from [0, 1].
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Greedy Algorithm

Example:

ℓ1 1 0 0 1 0 0 1 0 0 1 0 0 1 0
L1 1 1 1 2 2 2 3 3 3 4 4 4 5 5

ℓ2 0 1 0 0 1 0 0 1 0 0 1 0 0 1
L2 0 1 1 1 2 2 2 3 3 3 4 4 4 5

ℓ3 0 0 1 0 0 1 0 0 1 0 0 1 0 0
L3 0 0 1 1 1 2 2 2 3 3 3 4 4 4

j 1 2 3 1 2 3 1 2 3 1 2 3 1 2

ℓGreedy 1 1 1 1 1 1 1 1 1 1 1 1 1 1

LG 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Martin Hoefer Algorithmic Game Theory 2019/20
Learning and Correlated Equilibria



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Experts No-Regret, Coarse-Correlated Zero-Sum Concave Games

Greedy Algorithm

Theorem
The Greedy algorithm, for any sequence of losses from {0, 1}, has

LT
G ≤ N · LT

min + (N − 1).

Proof:
▶ Partition the sequence into phases 0, . . . , LT

min such that

Every step t with Lt−1
min = i belongs to phase i.

▶ In each phase i < LT
min, the Greedy algorithm incurs a loss of at most N .

▶ In phase LT
min, the loss of Greedy is at most N − 1.
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Lower Bound for Deterministic Algorithms

Theorem
For any deterministic online algorithm D and every T ≥ 1, there exists a
sequence of T losses such that

LT
D = T and LT

min ≤ ⌊T/N⌋.

This lower bound can be shown quite easily by generalizing the example that
we have given for the Greedy algorithm. (How?)

The lower bound shows that one cannot get better than the Greedy algorithm
without using randomization.
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Randomized Weighted Majority (RWM) Algorithm

Let η ∈ (0, 1
2
] be a suitably chosen parameter.

Randomized Weighted Majority (RWM) Algorithm
Initially, set w1

i = 1, for every i ∈ [N ].
At every time t,
▶ let W t =

∑N
i=1 w

t
i ;

▶ choose expert i with probability pti = wt
i/W

t;
▶ set wt+1

i = wt
i · (1− η)ℓ

t
i .
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Randomized Weighted Majority (RWM) Algorithm

Theorem (Littlestone, Warmuth, 1994)
The RWM algorithm, for any sequence of losses from [0, 1], has

LT
RWM ≤ (1 + η)LT

min +
lnN

η
.

Setting η =
√

lnN
T

yields

LT
RWM ≤ LT

min + 2
√
T lnN .
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Randomized Weighted Majority (RWM) Algorithm

The regret of a learning algorithm H is defined as LT
H − LT

min.

Corollary
The RWM algorithm with η =

√
lnN
T

has regret at most 2
√
T lnN .

The average regret per step is thus only 2
√

lnN
T

.

Observe that this quantity is going to zero when increasing T .

Algorithms with this property are called

no-regret learning algorithms.

Thus, in contrast to the simple greedy algorithms is RWM a no-regret
algorithm.
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Randomized Weighted Majority (RWM) Algorithm

Proof of the theorem:
▶ Let us analyze how the sum of weights W t decreases over time. It holds

W t+1 =

N∑
i=1

wt+1
i =

N∑
i=1

wt
i(1− η)ℓ

t
i .

▶ Observe that (1− η)ℓ = (1− ℓη), for both ℓ = 0 and ℓ = 1.
▶ Furthermore, (1− η)ℓ is a convex function in ℓ.
▶ For ℓ ∈ [0, 1] this implies (1− η)ℓ ≤ (1− ℓη).
▶ This gives

W t+1 ≤
N∑
i=1

wt
i(1− ℓtiη) .
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Randomized Weighted Majority (RWM) Algorithm

▶ Let F t denote the expected loss of RWM in step t.
▶ It holds F t =

∑N
i=1 ℓ

t
iw

t
i/W

t.
▶ Substituting this into the bound for W t+1 gives

W t+1 ≤ W t − ηF tW t = W t(1− ηF t) .

▶ As a consequence,

WT+1 ≤ W 1
T∏

t=1

(1− ηF t) = N

T∏
t=1

(1− ηF t) .

▶ The sum of weights after step T can be upper bounded in terms of the
expected loss of RWM.
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Randomized Weighted Majority (RWM) Algorithm

▶ On the other hand, the sum of weights after step T can be lower bounded
in terms of the loss of the best expert as follows:

WT+1 ≥ max
1≤i≤N

(wT+1
i ) = max

1≤i≤N

(
(1− η)

∑T
t=1 ℓti

)
= (1− η)L

T
min .

▶ Combining the bounds and taking the logarithm on both sides gives

LT
min ln(1− η) ≤ (lnN) +

T∑
t=1

ln(1− ηFT ) .

▶ In order to simplify, we will now use the following estimation

−z − z2 ≤ ln(1− z) ≤ − z

holding for every z ∈ [0, 1
2
].
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Randomized Weighted Majority (RWM) Algorithm

▶ This gives

LT
min(−η − η2) ≤ (lnN) +

T∑
t=1

(−ηF t)

= (lnN)− ηLT
RWM .

▶ Finally, solving for LT
RWM gives

LT
RWM ≤ (1 + η)LT

min +
lnN

η
.
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Learning Equilibria in Games

Regret minimization is a natural model for behavior in cases where we have to
make repeated decisions with incomplete information.

We consider regret learning when a game Γ = (N , (Σi)i∈N , (ci)i∈N ) is played
over and over again for T rounds (called repeated game).

Initially, no player i ∈ N knows the game. In each round t he picks a pure
strategy sti ∈ Σi using a no-regret algorithm. The algorithm of player i is based
only on the costs observed by i in previous rounds.

Does the system converge to (approx.) Nash equilibrium in this case?

This would be a nice and plausible explanation how Nash equilibria can evolve
in practice. Unfortunately, in general, the answer is “No”.
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Learning and Equilibria

For every player the average regret over time is going to 0. Based on this
property, we can derive a (more general) equilibrium concept.

Definition
Let V be a probability distribution over the states of a finite game. V is called
coarse-correlated equilibrium if for every player i ∈ N and every strategy
s′i ∈ Si it holds

Es∼V [ci(s)] ≤ Es∼V [ci(s
′
i, s−i)] .

V is called (additive) ε-approximate coarse-correlated equilibrium if

Es∼V [ci(s)] ≤ Es∼V [ci(s
′
i, s−i)] + ε .
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No-Regret and Coarse-Correlated Equilibria

Consider the history of play s1, s2, . . . , sT in a repeated game over T rounds.
We interpret the history as a distribution over states by choosing k ∈ [T ]
uniformly at random.

If player i has regret Ri(T ), then for every strategy s′i ∈ Si

Ek∈[T ][ci(s
k)] =

T∑
t=1

1

T
· ci(st) ≤

T∑
t=1

1

T
· ci(s′i, st−i) +

Ri(T )

T

= Ek∈[T ][ci(s
′
i, s

k
−i)] +

Ri(T )

T
.

Proposition
After T rounds if every player has regret at most R, then the history of play
represents a R

T
-approximate coarse-correlated equilibrium.

Suppose all players are using RWM, then after at most T = 4
ε2

· log(maxi |Si|)
rounds the history of play represents a ε-approximate coarse-correlated
equilibrium.
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Imitating Experts

No-Regret Algorithms and Coarse-Correlated Equilibria

Zero-Sum Games

Concave Games
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Recall 2-Player Zero-Sum Games

▶ A 2-player zero-sum game is a strategic game with 2 players, where
cI(s) + cII(s) = 0 for every state s.

▶ Matrix A with |ΣI| rows and |ΣII| columns.
Player I is row player, player II is column player.

▶ aij is utility for player I in state (i, j),
aij is cost or loss for player II in state (i, j).

▶ We here normalize A to have aij ∈ [0, 1]:

Make A non-negative by adding max |aij | to every entry. Then divide by
the resulting largest entry scaling all aij to [0, 1].

Observe that this does not alter the optimal strategies (and thereby the
Nash equilibria) of the game.
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Examples

Matching Pennies
(normalized)(

1 0
0 1

)
Rock-Paper-Scissors
(normalized)

 1/2 0 1
1 1/2 0
0 1 1/2



A game with
|ΣI| ̸= |ΣII|:

(
0 1/2 1

1/4 1/2 3/4

)
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Maximin Strategies

▶ Gain-Floor for player I: v∗I = maxx miny x
TAy.

Optimal strategy x∗ guarantees the gain-floor for I (maximin strategy).

▶ Loss-Ceiling for player II: v∗II = miny maxx x
TAy.

Optimal strategy y∗ guarantees the loss-ceiling for II (minimax strategy).

Lemma
It holds that v∗I ≤ v∗II.

Theorem (Minimax Theorem)
In every 2-player zero-sum game it holds that v = v∗I = v∗II.
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Mixed Nash equilibrium

Corollary

State (x, y) in a 2-player zero-sum game is a mixed Nash equilibrium
⇔

x and y are optimal strategies.

Corollary
Every 2-player zero-sum game has at least one mixed Nash equilibrium. All
mixed Nash equilibria in such a game yield the same expected utility for player
I.

Theorem
In 2-player zero-sum games a mixed Nash equilibrium can be computed in
polynomial time.
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Learning in Zero-Sum Games

▶ Players do not know the game they are playing. They use no-regret
learning algorithms to make their strategy choice.

Can they learn to play optimally (i.e., learn a Nash equilibrium) ?

▶ Consider player II, experts are pure strategies, adversary is player I.
▶ In each step t learning algorithm H of player II picks mixed strategy yt

against an unknown adversary strategy xt of player I.
▶ Loss in round t for strategy (expert) i is

ℓti =
∑
j∈ΣI

xt
jaji .

▶ Total loss in round t of learning algorithm H is

ℓtH = cII(x
t, yt) =

∑
i∈ΣII

∑
j∈ΣI

xt
jajiy

t
i .
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Learning in Zero-Sum Games

▶ Players do not know the game they are playing. They use no-regret
learning algorithms to make their strategy choice.

Can they learn to play optimally (i.e., learn a Nash equilibrium) ?

▶ Consider player II, experts are pure strategies, adversary is player I.
▶ In each step t learning algorithm H of player II picks mixed strategy yt

against an unknown adversary strategy xt of player I.

▶ Loss in round t for strategy (expert) i is

ℓti =
∑
j∈ΣI

xt
jaji .

▶ Total loss in round t of learning algorithm H is

ℓtH = cII(x
t, yt) =

∑
i∈ΣII

∑
j∈ΣI

xt
jajiy

t
i .
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Learning in Zero-Sum Games

▶ Players do not know the game they are playing. They use no-regret
learning algorithms to make their strategy choice.

Can they learn to play optimally (i.e., learn a Nash equilibrium) ?

▶ Consider player II, experts are pure strategies, adversary is player I.
▶ In each step t learning algorithm H of player II picks mixed strategy yt

against an unknown adversary strategy xt of player I.
▶ Loss in round t for strategy (expert) i is

ℓti =
∑
j∈ΣI

xt
jaji .

▶ Total loss in round t of learning algorithm H is

ℓtH = cII(x
t, yt) =

∑
i∈ΣII

∑
j∈ΣI

xt
jajiy

t
i .
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No-Regret and Optimal Strategies

▶ No-regret learning algorithm H:

LT
H − LT

min

T
−→ 0 when T → ∞ .

▶ By definition, the average loss per round of any no-regret learning
algorithm becomes as small as the best average loss of any pure strategy
in hindsight.

▶ Is the average loss LT
H/T as small as the value of the game?

Theorem
For a 2-player zero-sum game with gain floor v∗I , if player II plays for T steps
using algorithm H with regret R, then the average loss

LT
H

T
≤ v∗I +

R

T
.

The result applies similarly for player I and the loss-ceiling.

Martin Hoefer Algorithmic Game Theory 2019/20
Learning and Correlated Equilibria



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Experts No-Regret, Coarse-Correlated Zero-Sum Concave Games

No-Regret and Optimal Strategies

▶ No-regret learning algorithm H:
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algorithm becomes as small as the best average loss of any pure strategy
in hindsight.

▶ Is the average loss LT
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Theorem
For a 2-player zero-sum game with gain floor v∗I , if player II plays for T steps
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No-Regret and Optimal Strategies

▶ No-regret learning algorithm H:

LT
H − LT

min

T
−→ 0 when T → ∞ .

▶ By definition, the average loss per round of any no-regret learning
algorithm becomes as small as the best average loss of any pure strategy
in hindsight.

▶ Is the average loss LT
H/T as small as the value of the game?

Theorem
For a 2-player zero-sum game with gain floor v∗I , if player II plays for T steps
using algorithm H with regret R, then the average loss

LT
H

T
≤ v∗I +
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The result applies similarly for player I and the loss-ceiling.
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Learning the Gain Floor

Proof:
▶ We will show that the best pure strategy in hindsight has total loss at

most LT
min ≤ T · v∗I .

▶ Consider the history of play of the adversary player I, i.e., strategies
x1, x2, . . . , xT , and combine them to an “average strategy”

x̂j =
1

T

T∑
t=1

xt
j for all j ∈ ΣI.

▶ Total loss LT
i of a single strategy i ∈ ΣII in hindsight is the same if player

I had always played x̂ in all time steps:

Lt
i =

T∑
t=1

∑
j∈ΣI

xt
j · aji =

∑
j∈ΣI

(
T∑

t=1

xt
j

)
· aji = T ·

∑
j∈ΣI

x̂j · aji .
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Learning the Gain Floor

▶ If we assume I plays always x̂ and consider the best pure strategy for II in
hindsight, then the scenario reduces to a one-step game.

▶ In this one-step game, player I first determines the average history of play
x̂ and then player II picks best pure strategy against x̂ – i.e., I moves
first, then II answers.

▶ By definition of gain floor, there is always i ∈ ΣII such that gain of I/loss
of II is reduced to at most v∗I , i.e., cII(x̂, i) ≤ v∗I .

▶ Hence, there is a pure strategy i ∈ ΣII such that

LT
min ≤ LT

i ≤ T · v∗I .

▶ Combining these insights:

LT
H ≤ LT

min +R ≤ T · v∗I +R .
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A Simple Proof of the Minimax Theorem

Theorem (Minimax Theorem)
In every 2-player zero-sum game it holds that v = v∗I = v∗II.

Proof:
▶ For contradiction, assume v∗I + γ = v∗II for some γ > 0.
▶ Let both players play the game iteratively for T steps with a learning

algorithm that has regret R/T < γ/3.
▶ Using the average history of play as before we note that LT

min ≤ v∗I for
player II, and LT

min ≤ −v∗II for player I (“−” because of loss).
▶ But this means the algorithms yield at most vI + γ/3 average cost for

player II and at least vII − γ/3 average gain for player I.
▶ Average cost of II is average gain of I → Contradiction.
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Convergence

Corollary
If both players use a no-regret learning algorithm, the average histories of play
(x̂, ŷ) converge to optimal strategies and, thus, to a mixed Nash equilibrium of
the game.

This shows convergence only for the history of play, but not for the actual
behavior in the distributions xt and yt!

Theorem
There are no-regret algorithms for players I and II such that the actual
behavior xt and yt does not converge to optimal strategies.
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Convergence for General No-Regret Algorithms

Matching Pennies (normalized) (
1 0
0 1

)
Proof: A “weird” no-regret algorithm H:
▶ Rule: I and II pick pure strategies, I moves to the other pure strategy in

rounds 1, 3, 5, ..., II moves to the other pure strategy in rounds 2, 4, 6,...
▶ If one player deviates from the rule, the other invokes the RWM algorithm.

(trick to ensure no-regret property for every possible sequence of play).

▶ LT
i /T → 0.5 for both strategies i = 1, 2 of II, average loss of algorithm

LT
H/T → 0.5. No-regret algorithm for II! (similar argument for I).

▶ None of the distributions yt is close to optimal strategy (0.5, 0.5), no
single round loss ℓtH is close to v = 0.5.
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An Adaptive RWM Algorithm (Freund, Schapire, 1999)

Let η0 ∈ (0, 1
2
] and u be an upper bound on the value of the game.

Variable Randomized Weighted Majority (vRWM) Algorithm
Initially, set w1

i = 1, for every i ∈ [N ].
At every time t,
▶ let W t =

∑N
i=1 w

t
i ;

▶ choose expert i with probability pti = wt
i/W

t;
▶ if ℓtvRWM ≤ u then set wt+1

i = wt
i ;

▶ else set
ηt = 1− u(1− ℓtvRWM )

(1− u)ℓtvRWM

and wt+1
i = wt

i · (1− ηt)
ℓti .
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Comparison of Distributions

Definition
The relative entropy or Kullback-Leibler divergence of two distributions y and
y′ is defined as

RE(y || y′) =

n∑
i=1

yi · ln
(
yi
y′
i

)
.

To compare a, b ∈ [0, 1] we use distributions (a, 1− a) and (b, 1− b):

RE(a || b) = RE((a, 1− a) || (b, 1− b))

= a ln
(a
b

)
+ (1− a) ln

(
1− a

1− b

)
.

The relative entropy for distributions is always non-negative and
RE(y || y′) = 0 if and only if y = y′.
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Convergence of vRWM

Theorem
Let y′ be any mixed strategy for II which generates a loss of at most u against
every best response of I. Then in any iteration t of vRWM in which
ℓtvRWM ≥ u the relative entropy between y′ and yt+1 satisfies

RE(y′ || yt+1) ≤ RE(y′ || yt)−RE(u || ℓtvRWM ) .

In every step, in which the loss of vRWM is too high, the adjustment moves
the next distribution closer to a good strategy.
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Proof of the Theorem

Proof:
For completeness, we provide a proof of the last theorem. Consider a step, in
which ℓtvRWM > u and bound

RE(y′ || yt+1)−RE(y′ || yt)

=
∑
i∈ΣII

y′
i ln

y′
i

yt+1
i

−
∑
i∈ΣII

y′
i ln

y′
i

yt
i

=
∑
i∈ΣII

y′
i ln

yt
i

yt+1
i

≤
∑
i∈ΣII

y′
i ln

1− ηtℓ
t
vRWM

(1− ηt)ℓ
t
i

,

where we use that yt+1
i = wt

i(1− ηt)
ℓti/W t+1 and

W t+1 ≤ W t(1− ηtF
t) = W t(1− ηtℓ

t
vRWM ) as observed above.
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Proof of the Theorem

RE(y′ || yt+1)−RE(y′ || yt)

≤
∑
i∈ΣII

y′
i ln

1− ηtℓ
t
vRWM

(1− ηt)ℓ
t
i

=
∑
i∈ΣII

y′
i ln

(
1

1− ηt

)ℓti

+ ln(1− ηtℓ
t
vRWM )

=

(
ln

1

1− ηt

)
·
∑
i∈ΣII

y′
iℓ

t
i + ln(1− ηtℓ

t
vRWM )

≤
(
ln

1

1− ηt

)
u+ ln(1− ηtℓ

t
vRWM ) ,

because strategy y′ never generates more loss than u.
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Proof of the Theorem

We take the derivative of(
ln

1

1− ηt

)
u+ ln(1− ηtℓ

t
vRWM )

for ηt and equate it with 0. This implies a minimum is attained at

ηt = 1− u(1− ℓtvRWM )

(1− u)ℓtvRWM

as desired. Plugging in this expression for ηt yields

− u ln

(
u

ℓtvRWM

· 1− ℓtvRWM

1− u

)
+ ln

1− ℓtvRWM

1− u

=−RE(u || ℓtvRWM ) .
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Convergence of vRWM

Corollary
For any sequence of strategies y1, y2, . . . the number of rounds in which the
loss ℓtvRWM ≥ u+ ε is at most

ln |ΣII|
RE(u || u+ ε)

.

For fixed ε this time is independent of T . Thus, the loss suffered in time steps
t must get closer to u when t gets larger and larger. This is a much more
desirable behavior than, e.g., the weird no-regret algorithm, which yields a loss
of 1 every second round, even for arbitrarily large t.
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Imitating Experts

No-Regret Algorithms and Coarse-Correlated Equilibria

Zero-Sum Games

Concave Games
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Broadcast Game

A set N of n users want to download a video broadcast over a common link.
▶ Link has capacity C, we let wlog C = 1.
▶ As strategy player i places a bid si ∈ Σi, where Σi = [bmin, 1] with

bmin > 0 some minimum bid.
▶ Service provider M collects vector s of all bids, determines a proportional

throughput rate for each player:

Mi(s) =
si∑

j∈N sj
.

Note: Mi(s) > 0 and
∑

i Mi(s) = 1 = C.
▶ Player i gets his rate and pays his bid to the provider. Utility

ui(s) = αi ·Mi(s)− si =
αi · si∑
j∈N sj

− si

(Player i values money vs. rate with factor αi > 0).
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Example: (let, e.g., bmin = 0.01)

Player αi Bid si Rate Mi(s) Utility ui(s)

1 2 0.9 0.45 0.90 - 0.9 = 0
2 3 0.7 0.35 1.05 - 0.7 = 0.35
3 4 0.4 0.25 1.00 - 0.4 = 0.60

Functions ui(si, s−i) for s = (0.9, 0.7, 0.4):
▶ u1(x, 0.7, 0.4) = 2x

x+1.1
− x

▶ u2(0.9, x, 0.4) = 3x
x+1.3

− x

▶ u1(0.9, 0.7, x) = 4x
x+1.6

− x

Observe that utility functions are concave.
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Concavity/Convexity

Definition (Concave/Convex)
A function f : X → R is convex (concave) on X ⊂ Rk if the direct connection
between f(x) and f(y) lies above (below) f for every x, y ∈ X.
Formally, for all x, y ∈ R

Convex: λf(x) + (1− λ)f(y) ≥ f(λx+ (1− λ)y), for all λ ∈ (0, 1)
Concave: λf(x) + (1− λ)f(y) ≤ f(λx+ (1− λ)y), for all λ ∈ (0, 1)

For strictly concave/convex, ≥ and ≤ are replaced with > and <. Obviously if
f is (strictly) concave, then −f is (strictly) convex, and vice versa.

Utilities in the bandwidth game are strictly concave, e.g., in the previous
example:

u1

s10.01 1

u2

s20.01 1

u3

s30.01 1
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Existence of Equilibrium

A broadcast game is not a finite game, it has infinite strategy spaces.

Does a Nash equilibrium always exist?

One can use concavity of utility functions and Brouwer’s Theorem to prove:

Lemma
Every broadcast game has at least one (pure) Nash equilibrium.

This raises the question how a Nash equilibrium can evolve in these games.

Do players using no-regret learning converge to a Nash equilibrium?

To answer this question, we first have to find no-regret learning algorithms for
an infinite numbers of experts...

Martin Hoefer Algorithmic Game Theory 2019/20
Learning and Correlated Equilibria



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Experts No-Regret, Coarse-Correlated Zero-Sum Concave Games

Online Convex Minimization

An experts problem with infinitely many experts:
▶ “Experts” are all points in a convex and compact set D ⊂ Rk

▶ Every round t = 1, . . . , T we pick a point xt ∈ D

▶ Then we learn a differentiable and convex cost function ct : D → R.

Goal: Pick xt’s to minimize total cost
∑T

t=1 c
t(xt).

Note that instead of minimizing convex costs, we can equivalently think of
maximizing concave utility −ct(xt).
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Examples

For example, we could have D = [0, 1]2 and learn convex cost functions:

c1 c2

. . .

cT

In the repeated broadcast game
▶ Player i has a compact and convex D = [bmin, 1]

▶ His utility ui(si, s
t
−i) is concave and differentiable. Also, it depends on

unknown bids st−i, which are learned only after strategy si is chosen.

Martin Hoefer Algorithmic Game Theory 2019/20
Learning and Correlated Equilibria



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Experts No-Regret, Coarse-Correlated Zero-Sum Concave Games

No-Regret Property

▶ Our cost:
T∑

t=1

ct(xt) Best expert x∗:
T∑

t=1

ct(x∗) = min
x∈D

T∑
t=1

ct(x)

▶ Average regret per time step:

R(T )

T
=

1

T

(
T∑

t=1

ct(xt)−
T∑

t=1

ct(x∗)

)

▶ No-regret algorithm if R(T )
T

→ 0 for T → ∞.

We will derive a no-regret algorithm using projected gradient descent.
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Gradient Descent

Definition (Gradient)
For a differentiable function f : Rk → R, the gradient at a point x ∈ Rk is a
vector ∇f(x) ∈ Rk that points in the opposite direction of steepest descent.

In the broadcast game, the cost ct(x) = −ui(x, s
t
−i) is a function only of

x ∈ R, as st−i cannot be influenced by player i. Then ∇ct is the derivative of ct:

∇ct(x) = 1− αi ·
∑

j ̸=i s
t
j(

x+
∑

j ̸=i s
t
j

)2 .
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Gradient Descent

To minimize a single convex function f : Rk → R, it is sufficient to start at any
point x1 ∈ Rk and iteratively update it using the gradient by making steps in
the direction of steepest descent

xt+1 = xt − η · ∇f(xt) ,

with sufficiently small step size η ∈ R. We then “sink into the valley” of the
convex function and arrive close to (depending on η) the global minimum.

When we use gradients to minimize a single convex function f over a convex
subspace D, following the gradient descent could lead us outside D. A trick to
get around this is to map the point back into D as follows.
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Projected Gradient Descent

Definition (Projection)
We define a projection P : Rk → D such that P (x) = x′, where x ∈ Rk is
arbitrary and x′ ∈ D is closest to x.

In the broadcast game P (x) = x for x ∈ [bmin, 1], P (x) = 1 for x > 1, and
P (x) = bmin for x < bmin.

Intuitively, the projection returns x to the closest point in D.

If we minimize a single convex function f over a convex and compact space D
using projected gradient updates

xt+1 = P (xt − η∇f(xt)) ,

the convexity lets us “circle around the border” of D to sink to the minimum of
f within D.
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GIGA

For the online scenario with changing functions, we use the generalized
infinitesimal gradient ascent (GIGA) algorithm:

Pick x1 ∈ D arbitrary and xt+1 = P (xt − η · ∇ct(xt)) .

It uses the gradient for ct for optimizing ct+1. This seems like a stupid idea, as
ct+1 can be completely different from ct. Nevertheless, ...

Theorem (Zinkevich, 2003)
Let G ≥ ∥∇ct(x)∥ and ∆ ≥ ∥x− y∥ for all x, y ∈ D and t = 1, . . . , T . If
η = ∆

G
√
T

, then GIGA experiences a regret of

R(T ) ≤ ∆ ·G ·
√
T .

If G and ∆ are independent of T , GIGA is a no-regret algorithm.
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Proof of the Theorem

Intuition why GIGA “works”:
▶ Projected gradient descent works if all cost functions ct are similar.
▶ If functions are highly different, we get high cost, but then optimum

x∗ ∈ D must have high cost, too.

Potential argument to capture this intuition:
▶ W.l.o.g. label optimum as origin x∗ = 0 of the coordinate system.
▶ Consider “potential” as Φt =

1
2η
∥xt∥2.

▶ Φt measures distance of xt to x∗ = 0

Lemma (Cost-vs.-Distance)

ct(xt)− ct(0) + Φt+1 − Φt ≤ η ·G2/2

Either cost is close to optimal, or xt+1 is closer to x∗ than xt.
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Proof of the Cost-vs.-Distance Lemma

Note that ∥P (x)∥ ≤ ∥x∥, because D is convex and the projection always
moves x towards D and, thus, the origin x∗ = 0 ∈ D.

Φt+1 − Φt =
1

2η
(∥xt+1∥2 − ∥xt∥2)

≤ 1

2η
(∥xt − η∇ct(xt)∥2 − ∥xt∥2) (as ∥P (x)∥ ≤ ∥x∥)

=
1

2η
(∥xt∥2 + η2∥∇ct(xt)∥2 − 2η∇ct(xt)xt − ∥xt∥2)

where the last step uses the vector law of cosines,
∥u+ v∥2 = ∥u∥2 + ∥v∥2 + 2uT v.
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Proof of the Cost-vs.-Distance Lemma

Simplifying and using the definition of G yields

Φt+1 − Φt ≤ 1

2η
(∥xt∥2 + η2∥∇ct(xt)∥2 − 2η∇ct(xt)xt − ∥xt∥2)

≤ 1

2
ηG2 −∇ct(xt) · xt .

Convexity means a function grows “super-linear”, formally

ct(0)− ct(xt) ≥ ∇ct(xt) · (0− xt) .

Using this insight, we have

Φt+1 − Φt ≤ ηG2/2−∇ct(xt) · xt

≤ ηG2/2 + ct(0)− ct(xt) ,

which proves the lemma. (Lemma)
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Proof of the Theorem

Summing up from t = 1, . . . , T , we get a telescopic sum and the lemma yields
T∑

t=1

(ct(xt)− ct(0) + Φt+1 − Φt) = ΦT+1 − Φ1 +

T∑
t=1

(ct(xt)− ct(0))

≤ T · ηG2/2 .

We recall that x∗ = 0 and use ∆2

2η
≥ Φt ≥ 0 and η = ∆

G
√
T

to get

R(T ) =

T∑
t=1

(ct(xt)− ct(0))

≤ Φ1 − ΦT+1 +
TηG2

2
≤ ∆2

2η
+

TηG2

2

=
∆G

√
T

2
+

∆G
√
T

2
,

which proves the theorem. (Theorem)

Martin Hoefer Algorithmic Game Theory 2019/20
Learning and Correlated Equilibria



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Experts No-Regret, Coarse-Correlated Zero-Sum Concave Games

Convergence to Equilibrium

Now that we have derived a no-regret algorithm for infinite strategy spaces, we
can tackle the question how a Nash equilibrium might evolve in Broadcast
Games (and more general variants).

Do players using no-regret learning converge to a Nash equilibrium?

A quick experiment in the example broadcast game with 3 players given above
turns out as follows.
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t Player 1 Player 2 Player 3
∇u1(s

t−1) st1 ∇u2(s
t−1) st2 ∇u3(s

t−1) st3

1 0,01000 0,01000 0,01000

2 (21,22222) 1,00000 (43,44444) 1,00000 (65,66667) 1,00000
3 (-0,77778) 0,45003 (-0,55556) 0,60716 (-0,33333) 0,76430
4 (-0,58664) 0,11133 (-0,26800) 0,45243 (-0,04408) 0,73885
5 (-0,29793) 0,01000 (0,00210) 0,45348 (-0,00324) 0,73723
6 (-0,17409) 0,01000 (0,03659) 0,46985 (-0,03555) 0,72133
7 (-0,17441) 0,01000 (0,01375) 0,47546 (-0,00227) 0,72040
8 (-0,17759) 0,01000 (0,00461) 0,47720 (0,00157) 0,72099
9 (-0,17917) 0,01000 (0,00154) 0,47775 (0,00128) 0,72145

10 (-0,17984) 0,01000 (0,00051) 0,47792 (0,00075) 0,72170
11 (-0,18012) 0,01000 (0,00016) 0,47797 (0,00040) 0,72182
12 (-0,18024) 0,01000 (0,00004) 0,47798 (0,00021) 0,72189
13 (-0,18029) 0,01000 (0,00000) 0,47798 (0,00011) 0,72192
14 (-0,18031) 0,01000 (-0,00001) 0,47798 (0,00006) 0,72193
15 (-0,18032) 0,01000 (-0,00001) 0,47797 (0,00003) 0,72194
16 (-0,18033) 0,01000 (-0,00001) 0,47797 (0,00002) 0,72195
17 (-0,18033) 0,01000 (-0,00001) 0,47797 (0,00001) 0,72195
18 (-0,18033) 0,01000 (-0,00000) 0,47797 (0,00000) 0,72195
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Concave Games

Broadcast games are a special case of a larger class of games called socially
concave games. Every socially concave game has a pure Nash equilibrium.

Definition
A socially concave game is a strategic game Γ = (N , (Σi)i∈N , (ui)i∈N ), where
▶ N is a finite set of n players,
▶ every strategy set Σi is compact and convex,
▶ utility ui(si, s−i) is concave in si, for every fixed s−i,
▶ utility ui(si, s−i) is convex in s−i, for every fixed si ∈ Σi,
▶ there exist (λi)i∈N with λi > 0,

∑
i λi = 1 such that

g(s) =
∑

i∈N λiui(s) is a concave function in s.
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No-Regret Learning in Socially Concave Games

Theorem
Consider a socially concave game played repeatedly for T rounds. If every
player plays according to a no-regret algorithm, then as T → ∞:

1. The average history of play ŝ converges to a (mixed) Nash equilibrium.
2. The average utility of each player converges to her utility at the mixed

Nash equilibrium.

If all players use GIGA to pick their strategies in a repeated socially concave
game, the average history of play converges to a Nash equilibrium of the game.

Furthermore, it is known that if the utility functions ui are strictly concave in
si, there is a unique mixed Nash equilibrium which is also a pure one.

Thus, the theorem proves the intuition from our experiment, i.e., in the
broadcast game the set of players can learn a pure Nash equilibrium using
GIGA.
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Experts No-Regret, Coarse-Correlated Zero-Sum Concave Games

Literatur

▶ Rosen. Existence and Uniqueness of Equilibrium Points for Concave
n-Person Games. Econometrica, 33(3):520–534, 1965.

▶ Zinkevich. Online Convex Programming and Generalized Infinitesimal
Gradient Ascent. ICML 2003.

▶ Even-Dar, Mansour, Nadav. On the Convergence of Regret Minimization
Dynamics in Concave Games. STOC 2009.

Martin Hoefer Algorithmic Game Theory 2019/20
Learning and Correlated Equilibria


	Imitating Experts
	No-Regret Algorithms and Coarse-Correlated Equilibria
	Zero-Sum Games
	Concave Games

