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Systemic Risk in Financial Networks

Financial crisis in 2008:
Cascading defaults and bankruptcies

Design and analyze a model with
financial entities (banks, investment funds, etc.)
monetary liabilities and dependencies

Main Goals:
Analyze debts as major source of risk
in financial systems.
Understand effects and design suitable
measures for regulation of financial
markets.
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Money Flow Games

Eisenberg-Noe Model [Eisenberg, Noe, 2001]

Set V of n financial institutions or firms
Set E of directed edges, edge e ∈ E has value ce > 0
e = (u, v) represents a debt of ce that u owes to v
Each institution has liquid assets of value al

v ≥ 0.
Call l(v) =

∑
e∈E+(v)

ce the liabilities of v.

Strategic Choices
Every firm chooses a flow function fe : N→ N for each outgoing edge.
This specifies how each firm’s assets are distributed.
fe fulfills

fe(y) ≤ fe(z) for all e ∈ E+(v) and 0 ≤ y ≤ z. (non-decreasing)

0 ≤ fe(y) ≤ ce for all e ∈ E+(v) and y ∈ N. (capacity constraint)∑
e∈E+(v)

fe(y) = min{y, l(v)}. (no-fraud constraint)
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Clearing States [Eisenberg, Noe, 2001]

Given the strategy choices fe of the players, a clearing state a = (av)v∈V is a
vector of assets that obeys the strategy choices of the firms, i.e.

av = al
v +

∑
e=(u,v)∈E−(v)

fe(au) .

The firms strategically seek to maximize their assets, i.e. they try to clear as
much of their debts as possible.
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Financial Networks:
Network model
[Eisenberg, Noe, 2001]

Computational complexity of
finding clearing states with credit
default swaps
[Seuken, Schuldenzucker, Battiston, 2017]

Estimating the number of defaults
[Hemenway, Khanna, 2016]

Flow Games
Strategic max-flow games
[Kupferman et al, 2017, 2018]

Stable flows
[Fleiner, 2014; Cseh, Matuschke, 2019]



Strategic Payments

Main Objectives
Existence and uniqueness of clearing states.
Analyze how clearing states correspond to each other.

For a uniquely defined clearing state:
Do Nash equilibria always exist?
What is the computational complexity of finding a Nash equilibrium?
Analyze the inefficiency of Nash equilibria.
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Edge- & Coin-Ranking Games

Edge-Ranking: Ranking πv over outgoing edges E+(v). Debt is payed
according to this ranking.

Coin-Ranking: Arbitrary strategies. Integrality of ce and al
v: Ranking πv over

integral flow units (i.e., coins) spent on the outgoing edges
E+(v)

Coin-Ranking = Edge-Ranking in a graph with uniform edge weights.
(Transformation just for intuition not necessarily poly-time...)
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Existence of Clearing States

Theorem
For every strategy profile in a money flow game, there exists at least one
clearing state.

Proof.
Top preferences yield unique set of paths and cycles.
Choose a node v at which the clearing state condition is not fulfilled. Push
flow until some edge goes tight.
Edge (u,w) goes tight → u switches to next-higher ranked edge in πu.

Related to Top-Trading-Cycles algorithm [Shapley, Scarf, 1974]
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Structural Properties of Clearing States

Let A be the set of feasible clearing states for a strategy profile f .

Theorem
For every strategy profile in a money-flow game the pair (A,≤) forms a
complete lattice.

Theorem (Knaster, Tarski 1955)
Let (A,≤) be any complete lattice. Suppose g : A → A is order-preserving,
i.e., for all x, y ∈ A, x ≤ y implies g(x) ≤ g(y). Then the set of all fixed points
of g is a complete lattice with respect to ≤.

Proof of Theorem.
Let A = {a | 0 ≤ av ≤ al

v +
∑

e∈E−(v) ce∀v ∈ V }. (A,≤) forms a
complete lattice.
Define g(a)v = al

v +
∑

e=(u,v)∈E−(v) fe(au).
Apply Knaster-Tarski.

For the rest of the talk, always choose the unique maximum clearing state!



Structural Properties of Clearing States

Let A be the set of feasible clearing states for a strategy profile f .

Theorem
For every strategy profile in a money-flow game the pair (A,≤) forms a
complete lattice.

Theorem (Knaster, Tarski 1955)
Let (A,≤) be any complete lattice. Suppose g : A → A is order-preserving,
i.e., for all x, y ∈ A, x ≤ y implies g(x) ≤ g(y). Then the set of all fixed points
of g is a complete lattice with respect to ≤.

Proof of Theorem.
Let A = {a | 0 ≤ av ≤ al

v +
∑

e∈E−(v) ce∀v ∈ V }. (A,≤) forms a
complete lattice.
Define g(a)v = al

v +
∑

e=(u,v)∈E−(v) fe(au).
Apply Knaster-Tarski.

For the rest of the talk, always choose the unique maximum clearing state!



Structural Properties of Clearing States

Let A be the set of feasible clearing states for a strategy profile f .

Theorem
For every strategy profile in a money-flow game the pair (A,≤) forms a
complete lattice.

Theorem (Knaster, Tarski 1955)
Let (A,≤) be any complete lattice. Suppose g : A → A is order-preserving,
i.e., for all x, y ∈ A, x ≤ y implies g(x) ≤ g(y). Then the set of all fixed points
of g is a complete lattice with respect to ≤.

Proof of Theorem.
Let A = {a | 0 ≤ av ≤ al

v +
∑

e∈E−(v) ce∀v ∈ V }. (A,≤) forms a
complete lattice.
Define g(a)v = al

v +
∑

e=(u,v)∈E−(v) fe(au).
Apply Knaster-Tarski.

For the rest of the talk, always choose the unique maximum clearing state!



Structural Properties of Clearing States

Let A be the set of feasible clearing states for a strategy profile f .

Theorem
For every strategy profile in a money-flow game the pair (A,≤) forms a
complete lattice.

Theorem (Knaster, Tarski 1955)
Let (A,≤) be any complete lattice. Suppose g : A → A is order-preserving,
i.e., for all x, y ∈ A, x ≤ y implies g(x) ≤ g(y). Then the set of all fixed points
of g is a complete lattice with respect to ≤.

Proof of Theorem.
Let A = {a | 0 ≤ av ≤ al

v +
∑

e∈E−(v) ce∀v ∈ V }. (A,≤) forms a
complete lattice.
Define g(a)v = al

v +
∑

e=(u,v)∈E−(v) fe(au).
Apply Knaster-Tarski.

For the rest of the talk, always choose the unique maximum clearing state!



Results for Coin-Ranking Games

Theorem
Every money flow game has a strong equilibrium. The strong PoS is 1. This
equilibrium can be calculated in polynomial time.

Proof.

Observe: Optimal circulation maximizes assets in the original graph. This can
be calculated in polynomial time. [Tardos, 1985]
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Theorem
Every money flow game has a strong equilibrium. The strong PoS is 1. This
equilibrium can be calculated in polynomial time.

Proof.
Circulation can be turned into a clearing state of some strategy profile.

Suppose
there is a coalition C of players that have a profitable deviation. Let v1 ∈ C.

Theorem
The PoA is unbounded.
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Edge- & Coin-Ranking Games

Results on Coin-Ranking Games:
Strong equilibria exist. Computation in polynomial time.
Strong PoS = 1.
PoA unbounded.

Results on Edge-Ranking Games:
Nash equilibria might be absent.
Strong PoS unbounded.
Deciding whether a strong / Nash equilibrium exists is NP-hard.
Computing a strategy profile with maximum total revenue.

The restriction to edge-ranking games is harmful!
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Bankruptcy Settlement

Ranking on a per-contract basis can lead to extremely bad properties in
terms of strategic incentives and social welfare.

If regulation can allocate assets (in case of bankruptcy) on a monotone,
per-coin basis, it is possible to implement a socially optimal settlement
that is stable, even w.r.t. coalitional deviation.

Even in this scenario, however, arbitrary Nash equilibria can represent
extremely bad solutions.

Thank you!



Bankruptcy Settlement

Ranking on a per-contract basis can lead to extremely bad properties in
terms of strategic incentives and social welfare.

If regulation can allocate assets (in case of bankruptcy) on a monotone,
per-coin basis, it is possible to implement a socially optimal settlement
that is stable, even w.r.t. coalitional deviation.

Even in this scenario, however, arbitrary Nash equilibria can represent
extremely bad solutions.

Thank you!



Bankruptcy Settlement

Ranking on a per-contract basis can lead to extremely bad properties in
terms of strategic incentives and social welfare.

If regulation can allocate assets (in case of bankruptcy) on a monotone,
per-coin basis, it is possible to implement a socially optimal settlement
that is stable, even w.r.t. coalitional deviation.

Even in this scenario, however, arbitrary Nash equilibria can represent
extremely bad solutions.

Thank you!



Bankruptcy Settlement

Ranking on a per-contract basis can lead to extremely bad properties in
terms of strategic incentives and social welfare.

If regulation can allocate assets (in case of bankruptcy) on a monotone,
per-coin basis, it is possible to implement a socially optimal settlement
that is stable, even w.r.t. coalitional deviation.

Even in this scenario, however, arbitrary Nash equilibria can represent
extremely bad solutions.

Thank you!


